Server IP : 85.214.239.14 / Your IP : 18.221.93.44 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/3/cwd/proc/3/cwd/usr/lib/python3/dist-packages/dns/ |
Upload File : |
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2003-2017 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """Common DNSSEC-related functions and constants.""" from typing import Any, cast, Dict, List, Optional, Set, Tuple, Union import hashlib import math import struct import time import base64 from datetime import datetime from dns.dnssectypes import Algorithm, DSDigest, NSEC3Hash import dns.exception import dns.name import dns.node import dns.rdataset import dns.rdata import dns.rdatatype import dns.rdataclass import dns.rrset from dns.rdtypes.ANY.CDNSKEY import CDNSKEY from dns.rdtypes.ANY.CDS import CDS from dns.rdtypes.ANY.DNSKEY import DNSKEY from dns.rdtypes.ANY.DS import DS from dns.rdtypes.ANY.RRSIG import RRSIG, sigtime_to_posixtime from dns.rdtypes.dnskeybase import Flag class UnsupportedAlgorithm(dns.exception.DNSException): """The DNSSEC algorithm is not supported.""" class AlgorithmKeyMismatch(UnsupportedAlgorithm): """The DNSSEC algorithm is not supported for the given key type.""" class ValidationFailure(dns.exception.DNSException): """The DNSSEC signature is invalid.""" class DeniedByPolicy(dns.exception.DNSException): """Denied by DNSSEC policy.""" PublicKey = Union[ "rsa.RSAPublicKey", "ec.EllipticCurvePublicKey", "ed25519.Ed25519PublicKey", "ed448.Ed448PublicKey", ] PrivateKey = Union[ "rsa.RSAPrivateKey", "ec.EllipticCurvePrivateKey", "ed25519.Ed25519PrivateKey", "ed448.Ed448PrivateKey", ] def algorithm_from_text(text: str) -> Algorithm: """Convert text into a DNSSEC algorithm value. *text*, a ``str``, the text to convert to into an algorithm value. Returns an ``int``. """ return Algorithm.from_text(text) def algorithm_to_text(value: Union[Algorithm, int]) -> str: """Convert a DNSSEC algorithm value to text *value*, a ``dns.dnssec.Algorithm``. Returns a ``str``, the name of a DNSSEC algorithm. """ return Algorithm.to_text(value) def to_timestamp(value: Union[datetime, str, float, int]) -> int: """Convert various format to a timestamp""" if isinstance(value, datetime): return int(value.timestamp()) elif isinstance(value, str): return sigtime_to_posixtime(value) elif isinstance(value, float): return int(value) elif isinstance(value, int): return value else: raise TypeError("Unsupported timestamp type") def key_id(key: Union[DNSKEY, CDNSKEY]) -> int: """Return the key id (a 16-bit number) for the specified key. *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY`` Returns an ``int`` between 0 and 65535 """ rdata = key.to_wire() if key.algorithm == Algorithm.RSAMD5: return (rdata[-3] << 8) + rdata[-2] else: total = 0 for i in range(len(rdata) // 2): total += (rdata[2 * i] << 8) + rdata[2 * i + 1] if len(rdata) % 2 != 0: total += rdata[len(rdata) - 1] << 8 total += (total >> 16) & 0xFFFF return total & 0xFFFF class Policy: def __init__(self): pass def ok_to_sign(self, _: DNSKEY) -> bool: # pragma: no cover return False def ok_to_validate(self, _: DNSKEY) -> bool: # pragma: no cover return False def ok_to_create_ds(self, _: DSDigest) -> bool: # pragma: no cover return False def ok_to_validate_ds(self, _: DSDigest) -> bool: # pragma: no cover return False class SimpleDeny(Policy): def __init__(self, deny_sign, deny_validate, deny_create_ds, deny_validate_ds): super().__init__() self._deny_sign = deny_sign self._deny_validate = deny_validate self._deny_create_ds = deny_create_ds self._deny_validate_ds = deny_validate_ds def ok_to_sign(self, key: DNSKEY) -> bool: return key.algorithm not in self._deny_sign def ok_to_validate(self, key: DNSKEY) -> bool: return key.algorithm not in self._deny_validate def ok_to_create_ds(self, algorithm: DSDigest) -> bool: return algorithm not in self._deny_create_ds def ok_to_validate_ds(self, algorithm: DSDigest) -> bool: return algorithm not in self._deny_validate_ds rfc_8624_policy = SimpleDeny( {Algorithm.RSAMD5, Algorithm.DSA, Algorithm.DSANSEC3SHA1, Algorithm.ECCGOST}, {Algorithm.RSAMD5, Algorithm.DSA, Algorithm.DSANSEC3SHA1}, {DSDigest.NULL, DSDigest.SHA1, DSDigest.GOST}, {DSDigest.NULL}, ) allow_all_policy = SimpleDeny(set(), set(), set(), set()) default_policy = rfc_8624_policy def make_ds( name: Union[dns.name.Name, str], key: dns.rdata.Rdata, algorithm: Union[DSDigest, str], origin: Optional[dns.name.Name] = None, policy: Optional[Policy] = None, validating: bool = False, ) -> DS: """Create a DS record for a DNSSEC key. *name*, a ``dns.name.Name`` or ``str``, the owner name of the DS record. *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY`` or ``dns.rdtypes.ANY.DNSKEY.CDNSKEY``, the key the DS is about. *algorithm*, a ``str`` or ``int`` specifying the hash algorithm. The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case does not matter for these strings. *origin*, a ``dns.name.Name`` or ``None``. If *key* is a relative name, then it will be made absolute using the specified origin. *policy*, a ``dns.dnssec.Policy`` or ``None``. If ``None``, the default policy, ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624. *validating*, a ``bool``. If ``True``, then policy is checked in validating mode, i.e. "Is it ok to validate using this digest algorithm?". Otherwise the policy is checked in creating mode, i.e. "Is it ok to create a DS with this digest algorithm?". Raises ``UnsupportedAlgorithm`` if the algorithm is unknown. Raises ``DeniedByPolicy`` if the algorithm is denied by policy. Returns a ``dns.rdtypes.ANY.DS.DS`` """ if policy is None: policy = default_policy try: if isinstance(algorithm, str): algorithm = DSDigest[algorithm.upper()] except Exception: raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm) if validating: check = policy.ok_to_validate_ds else: check = policy.ok_to_create_ds if not check(algorithm): raise DeniedByPolicy if not isinstance(key, (DNSKEY, CDNSKEY)): raise ValueError("key is not a DNSKEY/CDNSKEY") if algorithm == DSDigest.SHA1: dshash = hashlib.sha1() elif algorithm == DSDigest.SHA256: dshash = hashlib.sha256() elif algorithm == DSDigest.SHA384: dshash = hashlib.sha384() else: raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm) if isinstance(name, str): name = dns.name.from_text(name, origin) wire = name.canonicalize().to_wire() assert wire is not None dshash.update(wire) dshash.update(key.to_wire(origin=origin)) digest = dshash.digest() dsrdata = struct.pack("!HBB", key_id(key), key.algorithm, algorithm) + digest ds = dns.rdata.from_wire( dns.rdataclass.IN, dns.rdatatype.DS, dsrdata, 0, len(dsrdata) ) return cast(DS, ds) def make_cds( name: Union[dns.name.Name, str], key: dns.rdata.Rdata, algorithm: Union[DSDigest, str], origin: Optional[dns.name.Name] = None, ) -> CDS: """Create a CDS record for a DNSSEC key. *name*, a ``dns.name.Name`` or ``str``, the owner name of the DS record. *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY`` or ``dns.rdtypes.ANY.DNSKEY.CDNSKEY``, the key the DS is about. *algorithm*, a ``str`` or ``int`` specifying the hash algorithm. The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case does not matter for these strings. *origin*, a ``dns.name.Name`` or ``None``. If *key* is a relative name, then it will be made absolute using the specified origin. Raises ``UnsupportedAlgorithm`` if the algorithm is unknown. Returns a ``dns.rdtypes.ANY.DS.CDS`` """ ds = make_ds(name, key, algorithm, origin) return CDS( rdclass=ds.rdclass, rdtype=dns.rdatatype.CDS, key_tag=ds.key_tag, algorithm=ds.algorithm, digest_type=ds.digest_type, digest=ds.digest, ) def _find_candidate_keys( keys: Dict[dns.name.Name, Union[dns.rdataset.Rdataset, dns.node.Node]], rrsig: RRSIG ) -> Optional[List[DNSKEY]]: value = keys.get(rrsig.signer) if isinstance(value, dns.node.Node): rdataset = value.get_rdataset(dns.rdataclass.IN, dns.rdatatype.DNSKEY) else: rdataset = value if rdataset is None: return None return [ cast(DNSKEY, rd) for rd in rdataset if rd.algorithm == rrsig.algorithm and key_id(rd) == rrsig.key_tag ] def _is_rsa(algorithm: int) -> bool: return algorithm in ( Algorithm.RSAMD5, Algorithm.RSASHA1, Algorithm.RSASHA1NSEC3SHA1, Algorithm.RSASHA256, Algorithm.RSASHA512, ) def _is_dsa(algorithm: int) -> bool: return algorithm in (Algorithm.DSA, Algorithm.DSANSEC3SHA1) def _is_ecdsa(algorithm: int) -> bool: return algorithm in (Algorithm.ECDSAP256SHA256, Algorithm.ECDSAP384SHA384) def _is_eddsa(algorithm: int) -> bool: return algorithm in (Algorithm.ED25519, Algorithm.ED448) def _is_gost(algorithm: int) -> bool: return algorithm == Algorithm.ECCGOST def _is_md5(algorithm: int) -> bool: return algorithm == Algorithm.RSAMD5 def _is_sha1(algorithm: int) -> bool: return algorithm in ( Algorithm.DSA, Algorithm.RSASHA1, Algorithm.DSANSEC3SHA1, Algorithm.RSASHA1NSEC3SHA1, ) def _is_sha256(algorithm: int) -> bool: return algorithm in (Algorithm.RSASHA256, Algorithm.ECDSAP256SHA256) def _is_sha384(algorithm: int) -> bool: return algorithm == Algorithm.ECDSAP384SHA384 def _is_sha512(algorithm: int) -> bool: return algorithm == Algorithm.RSASHA512 def _ensure_algorithm_key_combination(algorithm: int, key: PublicKey) -> None: """Ensure algorithm is valid for key type, throwing an exception on mismatch.""" if isinstance(key, rsa.RSAPublicKey): if _is_rsa(algorithm): return raise AlgorithmKeyMismatch('algorithm "%s" not valid for RSA key' % algorithm) if isinstance(key, dsa.DSAPublicKey): if _is_dsa(algorithm): return raise AlgorithmKeyMismatch('algorithm "%s" not valid for DSA key' % algorithm) if isinstance(key, ec.EllipticCurvePublicKey): if _is_ecdsa(algorithm): return raise AlgorithmKeyMismatch('algorithm "%s" not valid for ECDSA key' % algorithm) if isinstance(key, ed25519.Ed25519PublicKey): if algorithm == Algorithm.ED25519: return raise AlgorithmKeyMismatch( 'algorithm "%s" not valid for ED25519 key' % algorithm ) if isinstance(key, ed448.Ed448PublicKey): if algorithm == Algorithm.ED448: return raise AlgorithmKeyMismatch('algorithm "%s" not valid for ED448 key' % algorithm) raise TypeError("unsupported key type") def _make_hash(algorithm: int) -> Any: if _is_md5(algorithm): return hashes.MD5() if _is_sha1(algorithm): return hashes.SHA1() if _is_sha256(algorithm): return hashes.SHA256() if _is_sha384(algorithm): return hashes.SHA384() if _is_sha512(algorithm): return hashes.SHA512() if algorithm == Algorithm.ED25519: return hashes.SHA512() if algorithm == Algorithm.ED448: return hashes.SHAKE256(114) raise ValidationFailure("unknown hash for algorithm %u" % algorithm) def _bytes_to_long(b: bytes) -> int: return int.from_bytes(b, "big") def _get_rrname_rdataset( rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], ) -> Tuple[dns.name.Name, dns.rdataset.Rdataset]: if isinstance(rrset, tuple): return rrset[0], rrset[1] else: return rrset.name, rrset def _validate_signature(sig: bytes, data: bytes, key: DNSKEY, chosen_hash: Any) -> None: keyptr: bytes if _is_rsa(key.algorithm): # we ignore because mypy is confused and thinks key.key is a str for unknown # reasons. keyptr = key.key (bytes_,) = struct.unpack("!B", keyptr[0:1]) keyptr = keyptr[1:] if bytes_ == 0: (bytes_,) = struct.unpack("!H", keyptr[0:2]) keyptr = keyptr[2:] rsa_e = keyptr[0:bytes_] rsa_n = keyptr[bytes_:] try: rsa_public_key = rsa.RSAPublicNumbers( _bytes_to_long(rsa_e), _bytes_to_long(rsa_n) ).public_key(default_backend()) except ValueError: raise ValidationFailure("invalid public key") rsa_public_key.verify(sig, data, padding.PKCS1v15(), chosen_hash) elif _is_dsa(key.algorithm): keyptr = key.key (t,) = struct.unpack("!B", keyptr[0:1]) keyptr = keyptr[1:] octets = 64 + t * 8 dsa_q = keyptr[0:20] keyptr = keyptr[20:] dsa_p = keyptr[0:octets] keyptr = keyptr[octets:] dsa_g = keyptr[0:octets] keyptr = keyptr[octets:] dsa_y = keyptr[0:octets] try: dsa_public_key = dsa.DSAPublicNumbers( # type: ignore _bytes_to_long(dsa_y), dsa.DSAParameterNumbers( _bytes_to_long(dsa_p), _bytes_to_long(dsa_q), _bytes_to_long(dsa_g) ), ).public_key(default_backend()) except ValueError: raise ValidationFailure("invalid public key") dsa_public_key.verify(sig, data, chosen_hash) elif _is_ecdsa(key.algorithm): keyptr = key.key curve: Any if key.algorithm == Algorithm.ECDSAP256SHA256: curve = ec.SECP256R1() octets = 32 else: curve = ec.SECP384R1() octets = 48 ecdsa_x = keyptr[0:octets] ecdsa_y = keyptr[octets : octets * 2] try: ecdsa_public_key = ec.EllipticCurvePublicNumbers( curve=curve, x=_bytes_to_long(ecdsa_x), y=_bytes_to_long(ecdsa_y) ).public_key(default_backend()) except ValueError: raise ValidationFailure("invalid public key") ecdsa_public_key.verify(sig, data, ec.ECDSA(chosen_hash)) elif _is_eddsa(key.algorithm): keyptr = key.key loader: Any if key.algorithm == Algorithm.ED25519: loader = ed25519.Ed25519PublicKey else: loader = ed448.Ed448PublicKey try: eddsa_public_key = loader.from_public_bytes(keyptr) except ValueError: raise ValidationFailure("invalid public key") eddsa_public_key.verify(sig, data) elif _is_gost(key.algorithm): raise UnsupportedAlgorithm( 'algorithm "%s" not supported by dnspython' % algorithm_to_text(key.algorithm) ) else: raise ValidationFailure("unknown algorithm %u" % key.algorithm) def _validate_rrsig( rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], rrsig: RRSIG, keys: Dict[dns.name.Name, Union[dns.node.Node, dns.rdataset.Rdataset]], origin: Optional[dns.name.Name] = None, now: Optional[float] = None, policy: Optional[Policy] = None, ) -> None: """Validate an RRset against a single signature rdata, throwing an exception if validation is not successful. *rrset*, the RRset to validate. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *rrsig*, a ``dns.rdata.Rdata``, the signature to validate. *keys*, the key dictionary, used to find the DNSKEY associated with a given name. The dictionary is keyed by a ``dns.name.Name``, and has ``dns.node.Node`` or ``dns.rdataset.Rdataset`` values. *origin*, a ``dns.name.Name`` or ``None``, the origin to use for relative names. *now*, a ``float`` or ``None``, the time, in seconds since the epoch, to use as the current time when validating. If ``None``, the actual current time is used. *policy*, a ``dns.dnssec.Policy`` or ``None``. If ``None``, the default policy, ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624. Raises ``ValidationFailure`` if the signature is expired, not yet valid, the public key is invalid, the algorithm is unknown, the verification fails, etc. Raises ``UnsupportedAlgorithm`` if the algorithm is recognized by dnspython but not implemented. """ if policy is None: policy = default_policy candidate_keys = _find_candidate_keys(keys, rrsig) if candidate_keys is None: raise ValidationFailure("unknown key") if now is None: now = time.time() if rrsig.expiration < now: raise ValidationFailure("expired") if rrsig.inception > now: raise ValidationFailure("not yet valid") if _is_dsa(rrsig.algorithm): sig_r = rrsig.signature[1:21] sig_s = rrsig.signature[21:] sig = utils.encode_dss_signature(_bytes_to_long(sig_r), _bytes_to_long(sig_s)) elif _is_ecdsa(rrsig.algorithm): if rrsig.algorithm == Algorithm.ECDSAP256SHA256: octets = 32 else: octets = 48 sig_r = rrsig.signature[0:octets] sig_s = rrsig.signature[octets:] sig = utils.encode_dss_signature(_bytes_to_long(sig_r), _bytes_to_long(sig_s)) else: sig = rrsig.signature data = _make_rrsig_signature_data(rrset, rrsig, origin) chosen_hash = _make_hash(rrsig.algorithm) for candidate_key in candidate_keys: if not policy.ok_to_validate(candidate_key): continue try: _validate_signature(sig, data, candidate_key, chosen_hash) return except (InvalidSignature, ValidationFailure): # this happens on an individual validation failure continue # nothing verified -- raise failure: raise ValidationFailure("verify failure") def _validate( rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], rrsigset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], keys: Dict[dns.name.Name, Union[dns.node.Node, dns.rdataset.Rdataset]], origin: Optional[dns.name.Name] = None, now: Optional[float] = None, policy: Optional[Policy] = None, ) -> None: """Validate an RRset against a signature RRset, throwing an exception if none of the signatures validate. *rrset*, the RRset to validate. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *rrsigset*, the signature RRset. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *keys*, the key dictionary, used to find the DNSKEY associated with a given name. The dictionary is keyed by a ``dns.name.Name``, and has ``dns.node.Node`` or ``dns.rdataset.Rdataset`` values. *origin*, a ``dns.name.Name``, the origin to use for relative names; defaults to None. *now*, an ``int`` or ``None``, the time, in seconds since the epoch, to use as the current time when validating. If ``None``, the actual current time is used. *policy*, a ``dns.dnssec.Policy`` or ``None``. If ``None``, the default policy, ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624. Raises ``ValidationFailure`` if the signature is expired, not yet valid, the public key is invalid, the algorithm is unknown, the verification fails, etc. """ if policy is None: policy = default_policy if isinstance(origin, str): origin = dns.name.from_text(origin, dns.name.root) if isinstance(rrset, tuple): rrname = rrset[0] else: rrname = rrset.name if isinstance(rrsigset, tuple): rrsigname = rrsigset[0] rrsigrdataset = rrsigset[1] else: rrsigname = rrsigset.name rrsigrdataset = rrsigset rrname = rrname.choose_relativity(origin) rrsigname = rrsigname.choose_relativity(origin) if rrname != rrsigname: raise ValidationFailure("owner names do not match") for rrsig in rrsigrdataset: if not isinstance(rrsig, RRSIG): raise ValidationFailure("expected an RRSIG") try: _validate_rrsig(rrset, rrsig, keys, origin, now, policy) return except (ValidationFailure, UnsupportedAlgorithm): pass raise ValidationFailure("no RRSIGs validated") def _sign( rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], private_key: PrivateKey, signer: dns.name.Name, dnskey: DNSKEY, inception: Optional[Union[datetime, str, int, float]] = None, expiration: Optional[Union[datetime, str, int, float]] = None, lifetime: Optional[int] = None, verify: bool = False, policy: Optional[Policy] = None, ) -> RRSIG: """Sign RRset using private key. *rrset*, the RRset to validate. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *private_key*, the private key to use for signing, a ``cryptography.hazmat.primitives.asymmetric`` private key class applicable for DNSSEC. *signer*, a ``dns.name.Name``, the Signer's name. *dnskey*, a ``DNSKEY`` matching ``private_key``. *inception*, a ``datetime``, ``str``, ``int``, ``float`` or ``None``, the signature inception time. If ``None``, the current time is used. If a ``str``, the format is "YYYYMMDDHHMMSS" or alternatively the number of seconds since the UNIX epoch in text form; this is the same the RRSIG rdata's text form. Values of type `int` or `float` are interpreted as seconds since the UNIX epoch. *expiration*, a ``datetime``, ``str``, ``int``, ``float`` or ``None``, the signature expiration time. If ``None``, the expiration time will be the inception time plus the value of the *lifetime* parameter. See the description of *inception* above for how the various parameter types are interpreted. *lifetime*, an ``int`` or ``None``, the signature lifetime in seconds. This parameter is only meaningful if *expiration* is ``None``. *verify*, a ``bool``. If set to ``True``, the signer will verify signatures after they are created; the default is ``False``. *policy*, a ``dns.dnssec.Policy`` or ``None``. If ``None``, the default policy, ``dns.dnssec.default_policy`` is used; this policy defaults to that of RFC 8624. Raises ``DeniedByPolicy`` if the signature is denied by policy. """ if policy is None: policy = default_policy if not policy.ok_to_sign(dnskey): raise DeniedByPolicy if isinstance(rrset, tuple): rdclass = rrset[1].rdclass rdtype = rrset[1].rdtype rrname = rrset[0] original_ttl = rrset[1].ttl else: rdclass = rrset.rdclass rdtype = rrset.rdtype rrname = rrset.name original_ttl = rrset.ttl if inception is not None: rrsig_inception = to_timestamp(inception) else: rrsig_inception = int(time.time()) if expiration is not None: rrsig_expiration = to_timestamp(expiration) elif lifetime is not None: rrsig_expiration = int(time.time()) + lifetime else: raise ValueError("expiration or lifetime must be specified") rrsig_template = RRSIG( rdclass=rdclass, rdtype=dns.rdatatype.RRSIG, type_covered=rdtype, algorithm=dnskey.algorithm, labels=len(rrname) - 1, original_ttl=original_ttl, expiration=rrsig_expiration, inception=rrsig_inception, key_tag=key_id(dnskey), signer=signer, signature=b"", ) data = dns.dnssec._make_rrsig_signature_data(rrset, rrsig_template) chosen_hash = _make_hash(rrsig_template.algorithm) signature = None if isinstance(private_key, rsa.RSAPrivateKey): if not _is_rsa(dnskey.algorithm): raise ValueError("Invalid DNSKEY algorithm for RSA key") signature = private_key.sign(data, padding.PKCS1v15(), chosen_hash) if verify: private_key.public_key().verify( signature, data, padding.PKCS1v15(), chosen_hash ) elif isinstance(private_key, dsa.DSAPrivateKey): if not _is_dsa(dnskey.algorithm): raise ValueError("Invalid DNSKEY algorithm for DSA key") public_dsa_key = private_key.public_key() if public_dsa_key.key_size > 1024: raise ValueError("DSA key size overflow") der_signature = private_key.sign(data, chosen_hash) if verify: public_dsa_key.verify(der_signature, data, chosen_hash) dsa_r, dsa_s = utils.decode_dss_signature(der_signature) dsa_t = (public_dsa_key.key_size // 8 - 64) // 8 octets = 20 signature = ( struct.pack("!B", dsa_t) + int.to_bytes(dsa_r, length=octets, byteorder="big") + int.to_bytes(dsa_s, length=octets, byteorder="big") ) elif isinstance(private_key, ec.EllipticCurvePrivateKey): if not _is_ecdsa(dnskey.algorithm): raise ValueError("Invalid DNSKEY algorithm for EC key") der_signature = private_key.sign(data, ec.ECDSA(chosen_hash)) if verify: private_key.public_key().verify(der_signature, data, ec.ECDSA(chosen_hash)) if dnskey.algorithm == Algorithm.ECDSAP256SHA256: octets = 32 else: octets = 48 dsa_r, dsa_s = utils.decode_dss_signature(der_signature) signature = int.to_bytes(dsa_r, length=octets, byteorder="big") + int.to_bytes( dsa_s, length=octets, byteorder="big" ) elif isinstance(private_key, ed25519.Ed25519PrivateKey): if dnskey.algorithm != Algorithm.ED25519: raise ValueError("Invalid DNSKEY algorithm for ED25519 key") signature = private_key.sign(data) if verify: private_key.public_key().verify(signature, data) elif isinstance(private_key, ed448.Ed448PrivateKey): if dnskey.algorithm != Algorithm.ED448: raise ValueError("Invalid DNSKEY algorithm for ED448 key") signature = private_key.sign(data) if verify: private_key.public_key().verify(signature, data) else: raise TypeError("Unsupported key algorithm") return cast(RRSIG, rrsig_template.replace(signature=signature)) def _make_rrsig_signature_data( rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], rrsig: RRSIG, origin: Optional[dns.name.Name] = None, ) -> bytes: """Create signature rdata. *rrset*, the RRset to sign/validate. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *rrsig*, a ``dns.rdata.Rdata``, the signature to validate, or the signature template used when signing. *origin*, a ``dns.name.Name`` or ``None``, the origin to use for relative names. Raises ``UnsupportedAlgorithm`` if the algorithm is recognized by dnspython but not implemented. """ if isinstance(origin, str): origin = dns.name.from_text(origin, dns.name.root) signer = rrsig.signer if not signer.is_absolute(): if origin is None: raise ValidationFailure("relative RR name without an origin specified") signer = signer.derelativize(origin) # For convenience, allow the rrset to be specified as a (name, # rdataset) tuple as well as a proper rrset rrname, rdataset = _get_rrname_rdataset(rrset) data = b"" data += rrsig.to_wire(origin=signer)[:18] data += rrsig.signer.to_digestable(signer) # Derelativize the name before considering labels. if not rrname.is_absolute(): if origin is None: raise ValidationFailure("relative RR name without an origin specified") rrname = rrname.derelativize(origin) if len(rrname) - 1 < rrsig.labels: raise ValidationFailure("owner name longer than RRSIG labels") elif rrsig.labels < len(rrname) - 1: suffix = rrname.split(rrsig.labels + 1)[1] rrname = dns.name.from_text("*", suffix) rrnamebuf = rrname.to_digestable() rrfixed = struct.pack("!HHI", rdataset.rdtype, rdataset.rdclass, rrsig.original_ttl) rdatas = [rdata.to_digestable(origin) for rdata in rdataset] for rdata in sorted(rdatas): data += rrnamebuf data += rrfixed rrlen = struct.pack("!H", len(rdata)) data += rrlen data += rdata return data def _make_dnskey( public_key: PublicKey, algorithm: Union[int, str], flags: int = Flag.ZONE, protocol: int = 3, ) -> DNSKEY: """Convert a public key to DNSKEY Rdata *public_key*, the public key to convert, a ``cryptography.hazmat.primitives.asymmetric`` public key class applicable for DNSSEC. *algorithm*, a ``str`` or ``int`` specifying the DNSKEY algorithm. *flags*: DNSKEY flags field as an integer. *protocol*: DNSKEY protocol field as an integer. Raises ``ValueError`` if the specified key algorithm parameters are not unsupported, ``TypeError`` if the key type is unsupported, `UnsupportedAlgorithm` if the algorithm is unknown and `AlgorithmKeyMismatch` if the algorithm does not match the key type. Return DNSKEY ``Rdata``. """ def encode_rsa_public_key(public_key: "rsa.RSAPublicKey") -> bytes: """Encode a public key per RFC 3110, section 2.""" pn = public_key.public_numbers() _exp_len = math.ceil(int.bit_length(pn.e) / 8) exp = int.to_bytes(pn.e, length=_exp_len, byteorder="big") if _exp_len > 255: exp_header = b"\0" + struct.pack("!H", _exp_len) else: exp_header = struct.pack("!B", _exp_len) if pn.n.bit_length() < 512 or pn.n.bit_length() > 4096: raise ValueError("unsupported RSA key length") return exp_header + exp + pn.n.to_bytes((pn.n.bit_length() + 7) // 8, "big") def encode_dsa_public_key(public_key: "dsa.DSAPublicKey") -> bytes: """Encode a public key per RFC 2536, section 2.""" pn = public_key.public_numbers() dsa_t = (public_key.key_size // 8 - 64) // 8 if dsa_t > 8: raise ValueError("unsupported DSA key size") octets = 64 + dsa_t * 8 res = struct.pack("!B", dsa_t) res += pn.parameter_numbers.q.to_bytes(20, "big") res += pn.parameter_numbers.p.to_bytes(octets, "big") res += pn.parameter_numbers.g.to_bytes(octets, "big") res += pn.y.to_bytes(octets, "big") return res def encode_ecdsa_public_key(public_key: "ec.EllipticCurvePublicKey") -> bytes: """Encode a public key per RFC 6605, section 4.""" pn = public_key.public_numbers() if isinstance(public_key.curve, ec.SECP256R1): return pn.x.to_bytes(32, "big") + pn.y.to_bytes(32, "big") elif isinstance(public_key.curve, ec.SECP384R1): return pn.x.to_bytes(48, "big") + pn.y.to_bytes(48, "big") else: raise ValueError("unsupported ECDSA curve") the_algorithm = Algorithm.make(algorithm) _ensure_algorithm_key_combination(the_algorithm, public_key) if isinstance(public_key, rsa.RSAPublicKey): key_bytes = encode_rsa_public_key(public_key) elif isinstance(public_key, dsa.DSAPublicKey): key_bytes = encode_dsa_public_key(public_key) elif isinstance(public_key, ec.EllipticCurvePublicKey): key_bytes = encode_ecdsa_public_key(public_key) elif isinstance(public_key, ed25519.Ed25519PublicKey): key_bytes = public_key.public_bytes( encoding=serialization.Encoding.Raw, format=serialization.PublicFormat.Raw ) elif isinstance(public_key, ed448.Ed448PublicKey): key_bytes = public_key.public_bytes( encoding=serialization.Encoding.Raw, format=serialization.PublicFormat.Raw ) else: raise TypeError("unsupported key algorithm") return DNSKEY( rdclass=dns.rdataclass.IN, rdtype=dns.rdatatype.DNSKEY, flags=flags, protocol=protocol, algorithm=the_algorithm, key=key_bytes, ) def _make_cdnskey( public_key: PublicKey, algorithm: Union[int, str], flags: int = Flag.ZONE, protocol: int = 3, ) -> CDNSKEY: """Convert a public key to CDNSKEY Rdata *public_key*, the public key to convert, a ``cryptography.hazmat.primitives.asymmetric`` public key class applicable for DNSSEC. *algorithm*, a ``str`` or ``int`` specifying the DNSKEY algorithm. *flags*: DNSKEY flags field as an integer. *protocol*: DNSKEY protocol field as an integer. Raises ``ValueError`` if the specified key algorithm parameters are not unsupported, ``TypeError`` if the key type is unsupported, `UnsupportedAlgorithm` if the algorithm is unknown and `AlgorithmKeyMismatch` if the algorithm does not match the key type. Return CDNSKEY ``Rdata``. """ dnskey = _make_dnskey(public_key, algorithm, flags, protocol) return CDNSKEY( rdclass=dnskey.rdclass, rdtype=dns.rdatatype.CDNSKEY, flags=dnskey.flags, protocol=dnskey.protocol, algorithm=dnskey.algorithm, key=dnskey.key, ) def nsec3_hash( domain: Union[dns.name.Name, str], salt: Optional[Union[str, bytes]], iterations: int, algorithm: Union[int, str], ) -> str: """ Calculate the NSEC3 hash, according to https://tools.ietf.org/html/rfc5155#section-5 *domain*, a ``dns.name.Name`` or ``str``, the name to hash. *salt*, a ``str``, ``bytes``, or ``None``, the hash salt. If a string, it is decoded as a hex string. *iterations*, an ``int``, the number of iterations. *algorithm*, a ``str`` or ``int``, the hash algorithm. The only defined algorithm is SHA1. Returns a ``str``, the encoded NSEC3 hash. """ b32_conversion = str.maketrans( "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567", "0123456789ABCDEFGHIJKLMNOPQRSTUV" ) try: if isinstance(algorithm, str): algorithm = NSEC3Hash[algorithm.upper()] except Exception: raise ValueError("Wrong hash algorithm (only SHA1 is supported)") if algorithm != NSEC3Hash.SHA1: raise ValueError("Wrong hash algorithm (only SHA1 is supported)") if salt is None: salt_encoded = b"" elif isinstance(salt, str): if len(salt) % 2 == 0: salt_encoded = bytes.fromhex(salt) else: raise ValueError("Invalid salt length") else: salt_encoded = salt if not isinstance(domain, dns.name.Name): domain = dns.name.from_text(domain) domain_encoded = domain.canonicalize().to_wire() assert domain_encoded is not None digest = hashlib.sha1(domain_encoded + salt_encoded).digest() for _ in range(iterations): digest = hashlib.sha1(digest + salt_encoded).digest() output = base64.b32encode(digest).decode("utf-8") output = output.translate(b32_conversion) return output def make_ds_rdataset( rrset: Union[dns.rrset.RRset, Tuple[dns.name.Name, dns.rdataset.Rdataset]], algorithms: Set[Union[DSDigest, str]], origin: Optional[dns.name.Name] = None, ) -> dns.rdataset.Rdataset: """Create a DS record from DNSKEY/CDNSKEY/CDS. *rrset*, the RRset to create DS Rdataset for. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *algorithms*, a set of ``str`` or ``int`` specifying the hash algorithms. The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case does not matter for these strings. If the RRset is a CDS, only digest algorithms matching algorithms are accepted. *origin*, a ``dns.name.Name`` or ``None``. If `key` is a relative name, then it will be made absolute using the specified origin. Raises ``UnsupportedAlgorithm`` if any of the algorithms are unknown and ``ValueError`` if the given RRset is not usable. Returns a ``dns.rdataset.Rdataset`` """ rrname, rdataset = _get_rrname_rdataset(rrset) if rdataset.rdtype not in ( dns.rdatatype.DNSKEY, dns.rdatatype.CDNSKEY, dns.rdatatype.CDS, ): raise ValueError("rrset not a DNSKEY/CDNSKEY/CDS") _algorithms = set() for algorithm in algorithms: try: if isinstance(algorithm, str): algorithm = DSDigest[algorithm.upper()] except Exception: raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm) _algorithms.add(algorithm) if rdataset.rdtype == dns.rdatatype.CDS: res = [] for rdata in cds_rdataset_to_ds_rdataset(rdataset): if rdata.digest_type in _algorithms: res.append(rdata) if len(res) == 0: raise ValueError("no acceptable CDS rdata found") return dns.rdataset.from_rdata_list(rdataset.ttl, res) res = [] for algorithm in _algorithms: res.extend(dnskey_rdataset_to_cds_rdataset(rrname, rdataset, algorithm, origin)) return dns.rdataset.from_rdata_list(rdataset.ttl, res) def cds_rdataset_to_ds_rdataset( rdataset: dns.rdataset.Rdataset, ) -> dns.rdataset.Rdataset: """Create a CDS record from DS. *rdataset*, a ``dns.rdataset.Rdataset``, to create DS Rdataset for. Raises ``ValueError`` if the rdataset is not CDS. Returns a ``dns.rdataset.Rdataset`` """ if rdataset.rdtype != dns.rdatatype.CDS: raise ValueError("rdataset not a CDS") res = [] for rdata in rdataset: res.append( CDS( rdclass=rdata.rdclass, rdtype=dns.rdatatype.DS, key_tag=rdata.key_tag, algorithm=rdata.algorithm, digest_type=rdata.digest_type, digest=rdata.digest, ) ) return dns.rdataset.from_rdata_list(rdataset.ttl, res) def dnskey_rdataset_to_cds_rdataset( name: Union[dns.name.Name, str], rdataset: dns.rdataset.Rdataset, algorithm: Union[DSDigest, str], origin: Optional[dns.name.Name] = None, ) -> dns.rdataset.Rdataset: """Create a CDS record from DNSKEY/CDNSKEY. *name*, a ``dns.name.Name`` or ``str``, the owner name of the CDS record. *rdataset*, a ``dns.rdataset.Rdataset``, to create DS Rdataset for. *algorithm*, a ``str`` or ``int`` specifying the hash algorithm. The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case does not matter for these strings. *origin*, a ``dns.name.Name`` or ``None``. If `key` is a relative name, then it will be made absolute using the specified origin. Raises ``UnsupportedAlgorithm`` if the algorithm is unknown or ``ValueError`` if the rdataset is not DNSKEY/CDNSKEY. Returns a ``dns.rdataset.Rdataset`` """ if rdataset.rdtype not in (dns.rdatatype.DNSKEY, dns.rdatatype.CDNSKEY): raise ValueError("rdataset not a DNSKEY/CDNSKEY") res = [] for rdata in rdataset: res.append(make_cds(name, rdata, algorithm, origin)) return dns.rdataset.from_rdata_list(rdataset.ttl, res) def dnskey_rdataset_to_cdnskey_rdataset( rdataset: dns.rdataset.Rdataset, ) -> dns.rdataset.Rdataset: """Create a CDNSKEY record from DNSKEY. *rdataset*, a ``dns.rdataset.Rdataset``, to create CDNSKEY Rdataset for. Returns a ``dns.rdataset.Rdataset`` """ if rdataset.rdtype != dns.rdatatype.DNSKEY: raise ValueError("rdataset not a DNSKEY") res = [] for rdata in rdataset: res.append( CDNSKEY( rdclass=rdataset.rdclass, rdtype=rdataset.rdtype, flags=rdata.flags, protocol=rdata.protocol, algorithm=rdata.algorithm, key=rdata.key, ) ) return dns.rdataset.from_rdata_list(rdataset.ttl, res) def _need_pyca(*args, **kwargs): raise ImportError( "DNSSEC validation requires " + "python cryptography" ) # pragma: no cover try: from cryptography.exceptions import InvalidSignature from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.asymmetric import utils from cryptography.hazmat.primitives.asymmetric import dsa from cryptography.hazmat.primitives.asymmetric import ec from cryptography.hazmat.primitives.asymmetric import ed25519 from cryptography.hazmat.primitives.asymmetric import ed448 from cryptography.hazmat.primitives.asymmetric import rsa except ImportError: # pragma: no cover validate = _need_pyca validate_rrsig = _need_pyca sign = _need_pyca make_dnskey = _need_pyca make_cdnskey = _need_pyca _have_pyca = False else: validate = _validate # type: ignore validate_rrsig = _validate_rrsig # type: ignore sign = _sign make_dnskey = _make_dnskey make_cdnskey = _make_cdnskey _have_pyca = True ### BEGIN generated Algorithm constants RSAMD5 = Algorithm.RSAMD5 DH = Algorithm.DH DSA = Algorithm.DSA ECC = Algorithm.ECC RSASHA1 = Algorithm.RSASHA1 DSANSEC3SHA1 = Algorithm.DSANSEC3SHA1 RSASHA1NSEC3SHA1 = Algorithm.RSASHA1NSEC3SHA1 RSASHA256 = Algorithm.RSASHA256 RSASHA512 = Algorithm.RSASHA512 ECCGOST = Algorithm.ECCGOST ECDSAP256SHA256 = Algorithm.ECDSAP256SHA256 ECDSAP384SHA384 = Algorithm.ECDSAP384SHA384 ED25519 = Algorithm.ED25519 ED448 = Algorithm.ED448 INDIRECT = Algorithm.INDIRECT PRIVATEDNS = Algorithm.PRIVATEDNS PRIVATEOID = Algorithm.PRIVATEOID ### END generated Algorithm constants