Server IP : 85.214.239.14 / Your IP : 18.118.126.69 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/2/root/proc/3/root/proc/2/task/2/cwd/proc/2/cwd/usr/include/postgresql/9.6/server/lib/ |
Upload File : |
/*------------------------------------------------------------------------- * * ilist.h * integrated/inline doubly- and singly-linked lists * * These list types are useful when there are only a predetermined set of * lists that an object could be in. List links are embedded directly into * the objects, and thus no extra memory management overhead is required. * (Of course, if only a small proportion of existing objects are in a list, * the link fields in the remainder would be wasted space. But usually, * it saves space to not have separately-allocated list nodes.) * * None of the functions here allocate any memory; they just manipulate * externally managed memory. The APIs for singly and doubly linked lists * are identical as far as capabilities of both allow. * * Each list has a list header, which exists even when the list is empty. * An empty singly-linked list has a NULL pointer in its header. * There are two kinds of empty doubly linked lists: those that have been * initialized to NULL, and those that have been initialized to circularity. * (If a dlist is modified and then all its elements are deleted, it will be * in the circular state.) We prefer circular dlists because there are some * operations that can be done without branches (and thus faster) on lists * that use circular representation. However, it is often convenient to * initialize list headers to zeroes rather than setting them up with an * explicit initialization function, so we also allow the other case. * * EXAMPLES * * Here's a simple example demonstrating how this can be used. Let's assume * we want to store information about the tables contained in a database. * * #include "lib/ilist.h" * * // Define struct for the databases including a list header that will be * // used to access the nodes in the table list later on. * typedef struct my_database * { * char *datname; * dlist_head tables; * // ... * } my_database; * * // Define struct for the tables. Note the list_node element which stores * // prev/next list links. The list_node element need not be first. * typedef struct my_table * { * char *tablename; * dlist_node list_node; * perm_t permissions; * // ... * } my_table; * * // create a database * my_database *db = create_database(); * * // and add a few tables to its table list * dlist_push_head(&db->tables, &create_table(db, "a")->list_node); * ... * dlist_push_head(&db->tables, &create_table(db, "b")->list_node); * * * To iterate over the table list, we allocate an iterator variable and use * a specialized looping construct. Inside a dlist_foreach, the iterator's * 'cur' field can be used to access the current element. iter.cur points to * a 'dlist_node', but most of the time what we want is the actual table * information; dlist_container() gives us that, like so: * * dlist_iter iter; * dlist_foreach(iter, &db->tables) * { * my_table *tbl = dlist_container(my_table, list_node, iter.cur); * printf("we have a table: %s in database %s\n", * tbl->tablename, db->datname); * } * * * While a simple iteration is useful, we sometimes also want to manipulate * the list while iterating. There is a different iterator element and looping * construct for that. Suppose we want to delete tables that meet a certain * criterion: * * dlist_mutable_iter miter; * dlist_foreach_modify(miter, &db->tables) * { * my_table *tbl = dlist_container(my_table, list_node, miter.cur); * * if (!tbl->to_be_deleted) * continue; // don't touch this one * * // unlink the current table from the linked list * dlist_delete(miter.cur); * // as these lists never manage memory, we can still access the table * // after it's been unlinked * drop_table(db, tbl); * } * * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * IDENTIFICATION * src/include/lib/ilist.h *------------------------------------------------------------------------- */ #ifndef ILIST_H #define ILIST_H /* * Enable for extra debugging. This is rather expensive, so it's not enabled by * default even when USE_ASSERT_CHECKING. */ /* #define ILIST_DEBUG */ /* * Node of a doubly linked list. * * Embed this in structs that need to be part of a doubly linked list. */ typedef struct dlist_node dlist_node; struct dlist_node { dlist_node *prev; dlist_node *next; }; /* * Head of a doubly linked list. * * Non-empty lists are internally circularly linked. Circular lists have the * advantage of not needing any branches in the most common list manipulations. * An empty list can also be represented as a pair of NULL pointers, making * initialization easier. */ typedef struct dlist_head { /* * head.next either points to the first element of the list; to &head if * it's a circular empty list; or to NULL if empty and not circular. * * head.prev either points to the last element of the list; to &head if * it's a circular empty list; or to NULL if empty and not circular. */ dlist_node head; } dlist_head; /* * Doubly linked list iterator. * * Used as state in dlist_foreach() and dlist_reverse_foreach(). To get the * current element of the iteration use the 'cur' member. * * Iterations using this are *not* allowed to change the list while iterating! * * NB: We use an extra "end" field here to avoid multiple evaluations of * arguments in the dlist_foreach() macro. */ typedef struct dlist_iter { dlist_node *cur; /* current element */ dlist_node *end; /* last node we'll iterate to */ } dlist_iter; /* * Doubly linked list iterator allowing some modifications while iterating. * * Used as state in dlist_foreach_modify(). To get the current element of the * iteration use the 'cur' member. * * Iterations using this are only allowed to change the list at the current * point of iteration. It is fine to delete the current node, but it is *not* * fine to insert or delete adjacent nodes. * * NB: We need a separate type for mutable iterations so that we can store * the 'next' node of the current node in case it gets deleted or modified. */ typedef struct dlist_mutable_iter { dlist_node *cur; /* current element */ dlist_node *next; /* next node we'll iterate to */ dlist_node *end; /* last node we'll iterate to */ } dlist_mutable_iter; /* * Node of a singly linked list. * * Embed this in structs that need to be part of a singly linked list. */ typedef struct slist_node slist_node; struct slist_node { slist_node *next; }; /* * Head of a singly linked list. * * Singly linked lists are not circularly linked, in contrast to doubly linked * lists; we just set head.next to NULL if empty. This doesn't incur any * additional branches in the usual manipulations. */ typedef struct slist_head { slist_node head; } slist_head; /* * Singly linked list iterator. * * Used as state in slist_foreach(). To get the current element of the * iteration use the 'cur' member. * * It's allowed to modify the list while iterating, with the exception of * deleting the iterator's current node; deletion of that node requires * care if the iteration is to be continued afterward. (Doing so and also * deleting or inserting adjacent list elements might misbehave; also, if * the user frees the current node's storage, continuing the iteration is * not safe.) * * NB: this wouldn't really need to be an extra struct, we could use an * slist_node * directly. We prefer a separate type for consistency. */ typedef struct slist_iter { slist_node *cur; } slist_iter; /* * Singly linked list iterator allowing some modifications while iterating. * * Used as state in slist_foreach_modify(). To get the current element of the * iteration use the 'cur' member. * * The only list modification allowed while iterating is to remove the current * node via slist_delete_current() (*not* slist_delete()). Insertion or * deletion of nodes adjacent to the current node would misbehave. */ typedef struct slist_mutable_iter { slist_node *cur; /* current element */ slist_node *next; /* next node we'll iterate to */ slist_node *prev; /* prev node, for deletions */ } slist_mutable_iter; /* Static initializers */ #define DLIST_STATIC_INIT(name) {{&(name).head, &(name).head}} #define SLIST_STATIC_INIT(name) {{NULL}} /* Prototypes for functions too big to be inline */ /* Caution: this is O(n); consider using slist_delete_current() instead */ extern void slist_delete(slist_head *head, slist_node *node); #ifdef ILIST_DEBUG extern void dlist_check(dlist_head *head); extern void slist_check(slist_head *head); #else /* * These seemingly useless casts to void are here to keep the compiler quiet * about the argument being unused in many functions in a non-debug compile, * in which functions the only point of passing the list head pointer is to be * able to run these checks. */ #define dlist_check(head) ((void) (head)) #define slist_check(head) ((void) (head)) #endif /* ILIST_DEBUG */ /* doubly linked list implementation */ /* * Initialize a doubly linked list. * Previous state will be thrown away without any cleanup. */ static inline void dlist_init(dlist_head *head) { head->head.next = head->head.prev = &head->head; } /* * Is the list empty? * * An empty list has either its first 'next' pointer set to NULL, or to itself. */ static inline bool dlist_is_empty(dlist_head *head) { dlist_check(head); return head->head.next == NULL || head->head.next == &(head->head); } /* * Insert a node at the beginning of the list. */ static inline void dlist_push_head(dlist_head *head, dlist_node *node) { if (head->head.next == NULL) /* convert NULL header to circular */ dlist_init(head); node->next = head->head.next; node->prev = &head->head; node->next->prev = node; head->head.next = node; dlist_check(head); } /* * Insert a node at the end of the list. */ static inline void dlist_push_tail(dlist_head *head, dlist_node *node) { if (head->head.next == NULL) /* convert NULL header to circular */ dlist_init(head); node->next = &head->head; node->prev = head->head.prev; node->prev->next = node; head->head.prev = node; dlist_check(head); } /* * Insert a node after another *in the same list* */ static inline void dlist_insert_after(dlist_node *after, dlist_node *node) { node->prev = after; node->next = after->next; after->next = node; node->next->prev = node; } /* * Insert a node before another *in the same list* */ static inline void dlist_insert_before(dlist_node *before, dlist_node *node) { node->prev = before->prev; node->next = before; before->prev = node; node->prev->next = node; } /* * Delete 'node' from its list (it must be in one). */ static inline void dlist_delete(dlist_node *node) { node->prev->next = node->next; node->next->prev = node->prev; } /* * Remove and return the first node from a list (there must be one). */ static inline dlist_node * dlist_pop_head_node(dlist_head *head) { dlist_node *node; Assert(!dlist_is_empty(head)); node = head->head.next; dlist_delete(node); return node; } /* * Move element from its current position in the list to the head position in * the same list. * * Undefined behaviour if 'node' is not already part of the list. */ static inline void dlist_move_head(dlist_head *head, dlist_node *node) { /* fast path if it's already at the head */ if (head->head.next == node) return; dlist_delete(node); dlist_push_head(head, node); dlist_check(head); } /* * Check whether 'node' has a following node. * Caution: unreliable if 'node' is not in the list. */ static inline bool dlist_has_next(dlist_head *head, dlist_node *node) { return node->next != &head->head; } /* * Check whether 'node' has a preceding node. * Caution: unreliable if 'node' is not in the list. */ static inline bool dlist_has_prev(dlist_head *head, dlist_node *node) { return node->prev != &head->head; } /* * Return the next node in the list (there must be one). */ static inline dlist_node * dlist_next_node(dlist_head *head, dlist_node *node) { Assert(dlist_has_next(head, node)); return node->next; } /* * Return previous node in the list (there must be one). */ static inline dlist_node * dlist_prev_node(dlist_head *head, dlist_node *node) { Assert(dlist_has_prev(head, node)); return node->prev; } /* internal support function to get address of head element's struct */ static inline void * dlist_head_element_off(dlist_head *head, size_t off) { Assert(!dlist_is_empty(head)); return (char *) head->head.next - off; } /* * Return the first node in the list (there must be one). */ static inline dlist_node * dlist_head_node(dlist_head *head) { return (dlist_node *) dlist_head_element_off(head, 0); } /* internal support function to get address of tail element's struct */ static inline void * dlist_tail_element_off(dlist_head *head, size_t off) { Assert(!dlist_is_empty(head)); return (char *) head->head.prev - off; } /* * Return the last node in the list (there must be one). */ static inline dlist_node * dlist_tail_node(dlist_head *head) { return (dlist_node *) dlist_tail_element_off(head, 0); } /* * Return the containing struct of 'type' where 'membername' is the dlist_node * pointed at by 'ptr'. * * This is used to convert a dlist_node * back to its containing struct. */ #define dlist_container(type, membername, ptr) \ (AssertVariableIsOfTypeMacro(ptr, dlist_node *), \ AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \ ((type *) ((char *) (ptr) - offsetof(type, membername)))) /* * Return the address of the first element in the list. * * The list must not be empty. */ #define dlist_head_element(type, membername, lhead) \ (AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \ (type *) dlist_head_element_off(lhead, offsetof(type, membername))) /* * Return the address of the last element in the list. * * The list must not be empty. */ #define dlist_tail_element(type, membername, lhead) \ (AssertVariableIsOfTypeMacro(((type *) NULL)->membername, dlist_node), \ ((type *) dlist_tail_element_off(lhead, offsetof(type, membername)))) /* * Iterate through the list pointed at by 'lhead' storing the state in 'iter'. * * Access the current element with iter.cur. * * It is *not* allowed to manipulate the list during iteration. */ #define dlist_foreach(iter, lhead) \ for (AssertVariableIsOfTypeMacro(iter, dlist_iter), \ AssertVariableIsOfTypeMacro(lhead, dlist_head *), \ (iter).end = &(lhead)->head, \ (iter).cur = (iter).end->next ? (iter).end->next : (iter).end; \ (iter).cur != (iter).end; \ (iter).cur = (iter).cur->next) /* * Iterate through the list pointed at by 'lhead' storing the state in 'iter'. * * Access the current element with iter.cur. * * Iterations using this are only allowed to change the list at the current * point of iteration. It is fine to delete the current node, but it is *not* * fine to insert or delete adjacent nodes. */ #define dlist_foreach_modify(iter, lhead) \ for (AssertVariableIsOfTypeMacro(iter, dlist_mutable_iter), \ AssertVariableIsOfTypeMacro(lhead, dlist_head *), \ (iter).end = &(lhead)->head, \ (iter).cur = (iter).end->next ? (iter).end->next : (iter).end, \ (iter).next = (iter).cur->next; \ (iter).cur != (iter).end; \ (iter).cur = (iter).next, (iter).next = (iter).cur->next) /* * Iterate through the list in reverse order. * * It is *not* allowed to manipulate the list during iteration. */ #define dlist_reverse_foreach(iter, lhead) \ for (AssertVariableIsOfTypeMacro(iter, dlist_iter), \ AssertVariableIsOfTypeMacro(lhead, dlist_head *), \ (iter).end = &(lhead)->head, \ (iter).cur = (iter).end->prev ? (iter).end->prev : (iter).end; \ (iter).cur != (iter).end; \ (iter).cur = (iter).cur->prev) /* singly linked list implementation */ /* * Initialize a singly linked list. * Previous state will be thrown away without any cleanup. */ static inline void slist_init(slist_head *head) { head->head.next = NULL; } /* * Is the list empty? */ static inline bool slist_is_empty(slist_head *head) { slist_check(head); return head->head.next == NULL; } /* * Insert a node at the beginning of the list. */ static inline void slist_push_head(slist_head *head, slist_node *node) { node->next = head->head.next; head->head.next = node; slist_check(head); } /* * Insert a node after another *in the same list* */ static inline void slist_insert_after(slist_node *after, slist_node *node) { node->next = after->next; after->next = node; } /* * Remove and return the first node from a list (there must be one). */ static inline slist_node * slist_pop_head_node(slist_head *head) { slist_node *node; Assert(!slist_is_empty(head)); node = head->head.next; head->head.next = node->next; slist_check(head); return node; } /* * Check whether 'node' has a following node. */ static inline bool slist_has_next(slist_head *head, slist_node *node) { slist_check(head); return node->next != NULL; } /* * Return the next node in the list (there must be one). */ static inline slist_node * slist_next_node(slist_head *head, slist_node *node) { Assert(slist_has_next(head, node)); return node->next; } /* internal support function to get address of head element's struct */ static inline void * slist_head_element_off(slist_head *head, size_t off) { Assert(!slist_is_empty(head)); return (char *) head->head.next - off; } /* * Return the first node in the list (there must be one). */ static inline slist_node * slist_head_node(slist_head *head) { return (slist_node *) slist_head_element_off(head, 0); } /* * Delete the list element the iterator currently points to. * * Caution: this modifies iter->cur, so don't use that again in the current * loop iteration. */ static inline void slist_delete_current(slist_mutable_iter *iter) { /* * Update previous element's forward link. If the iteration is at the * first list element, iter->prev will point to the list header's "head" * field, so we don't need a special case for that. */ iter->prev->next = iter->next; /* * Reset cur to prev, so that prev will continue to point to the prior * valid list element after slist_foreach_modify() advances to the next. */ iter->cur = iter->prev; } /* * Return the containing struct of 'type' where 'membername' is the slist_node * pointed at by 'ptr'. * * This is used to convert a slist_node * back to its containing struct. */ #define slist_container(type, membername, ptr) \ (AssertVariableIsOfTypeMacro(ptr, slist_node *), \ AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \ ((type *) ((char *) (ptr) - offsetof(type, membername)))) /* * Return the address of the first element in the list. * * The list must not be empty. */ #define slist_head_element(type, membername, lhead) \ (AssertVariableIsOfTypeMacro(((type *) NULL)->membername, slist_node), \ (type *) slist_head_element_off(lhead, offsetof(type, membername))) /* * Iterate through the list pointed at by 'lhead' storing the state in 'iter'. * * Access the current element with iter.cur. * * It's allowed to modify the list while iterating, with the exception of * deleting the iterator's current node; deletion of that node requires * care if the iteration is to be continued afterward. (Doing so and also * deleting or inserting adjacent list elements might misbehave; also, if * the user frees the current node's storage, continuing the iteration is * not safe.) */ #define slist_foreach(iter, lhead) \ for (AssertVariableIsOfTypeMacro(iter, slist_iter), \ AssertVariableIsOfTypeMacro(lhead, slist_head *), \ (iter).cur = (lhead)->head.next; \ (iter).cur != NULL; \ (iter).cur = (iter).cur->next) /* * Iterate through the list pointed at by 'lhead' storing the state in 'iter'. * * Access the current element with iter.cur. * * The only list modification allowed while iterating is to remove the current * node via slist_delete_current() (*not* slist_delete()). Insertion or * deletion of nodes adjacent to the current node would misbehave. */ #define slist_foreach_modify(iter, lhead) \ for (AssertVariableIsOfTypeMacro(iter, slist_mutable_iter), \ AssertVariableIsOfTypeMacro(lhead, slist_head *), \ (iter).prev = &(lhead)->head, \ (iter).cur = (iter).prev->next, \ (iter).next = (iter).cur ? (iter).cur->next : NULL; \ (iter).cur != NULL; \ (iter).prev = (iter).cur, \ (iter).cur = (iter).next, \ (iter).next = (iter).next ? (iter).next->next : NULL) #endif /* ILIST_H */