Server IP : 85.214.239.14 / Your IP : 3.143.7.53 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/2/cwd/proc/self/root/proc/3/task/3/root/proc/3/root/usr/local/include/node/ |
Upload File : |
// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef INCLUDE_V8_LOCAL_HANDLE_H_ #define INCLUDE_V8_LOCAL_HANDLE_H_ #include <stddef.h> #include <type_traits> #include "v8-internal.h" // NOLINT(build/include_directory) namespace v8 { class Boolean; template <class T> class BasicTracedReference; class Context; class EscapableHandleScope; template <class F> class Eternal; template <class F> class FunctionCallbackInfo; class Isolate; template <class F> class MaybeLocal; template <class T> class NonCopyablePersistentTraits; class Object; template <class T, class M = NonCopyablePersistentTraits<T>> class Persistent; template <class T> class PersistentBase; template <class F1, class F2, class F3> class PersistentValueMapBase; template <class F1, class F2> class PersistentValueVector; class Primitive; class Private; template <class F> class PropertyCallbackInfo; template <class F> class ReturnValue; class String; template <class F> class Traced; template <class F> class TracedReference; class TracedReferenceBase; class Utils; namespace internal { template <typename T> class CustomArguments; } // namespace internal namespace api_internal { // Called when ToLocalChecked is called on an empty Local. V8_EXPORT void ToLocalEmpty(); } // namespace api_internal /** * A stack-allocated class that governs a number of local handles. * After a handle scope has been created, all local handles will be * allocated within that handle scope until either the handle scope is * deleted or another handle scope is created. If there is already a * handle scope and a new one is created, all allocations will take * place in the new handle scope until it is deleted. After that, * new handles will again be allocated in the original handle scope. * * After the handle scope of a local handle has been deleted the * garbage collector will no longer track the object stored in the * handle and may deallocate it. The behavior of accessing a handle * for which the handle scope has been deleted is undefined. */ class V8_EXPORT V8_NODISCARD HandleScope { public: explicit HandleScope(Isolate* isolate); ~HandleScope(); /** * Counts the number of allocated handles. */ static int NumberOfHandles(Isolate* isolate); V8_INLINE Isolate* GetIsolate() const { return reinterpret_cast<Isolate*>(isolate_); } HandleScope(const HandleScope&) = delete; void operator=(const HandleScope&) = delete; protected: V8_INLINE HandleScope() = default; void Initialize(Isolate* isolate); static internal::Address* CreateHandle(internal::Isolate* isolate, internal::Address value); private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Isolate* isolate_; internal::Address* prev_next_; internal::Address* prev_limit_; // Local::New uses CreateHandle with an Isolate* parameter. template <class F> friend class Local; // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with // a HeapObject in their shortcuts. friend class Object; friend class Context; }; /** * An object reference managed by the v8 garbage collector. * * All objects returned from v8 have to be tracked by the garbage collector so * that it knows that the objects are still alive. Also, because the garbage * collector may move objects, it is unsafe to point directly to an object. * Instead, all objects are stored in handles which are known by the garbage * collector and updated whenever an object moves. Handles should always be * passed by value (except in cases like out-parameters) and they should never * be allocated on the heap. * * There are two types of handles: local and persistent handles. * * Local handles are light-weight and transient and typically used in local * operations. They are managed by HandleScopes. That means that a HandleScope * must exist on the stack when they are created and that they are only valid * inside of the HandleScope active during their creation. For passing a local * handle to an outer HandleScope, an EscapableHandleScope and its Escape() * method must be used. * * Persistent handles can be used when storing objects across several * independent operations and have to be explicitly deallocated when they're no * longer used. * * It is safe to extract the object stored in the handle by dereferencing the * handle (for instance, to extract the Object* from a Local<Object>); the value * will still be governed by a handle behind the scenes and the same rules apply * to these values as to their handles. */ template <class T> class Local { public: V8_INLINE Local() : val_(nullptr) {} template <class S> V8_INLINE Local(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { /** * This check fails when trying to convert between incompatible * handles. For example, converting from a Local<String> to a * Local<Number>. */ static_assert(std::is_base_of<T, S>::value, "type check"); } /** * Returns true if the handle is empty. */ V8_INLINE bool IsEmpty() const { return val_ == nullptr; } /** * Sets the handle to be empty. IsEmpty() will then return true. */ V8_INLINE void Clear() { val_ = nullptr; } V8_INLINE T* operator->() const { return val_; } V8_INLINE T* operator*() const { return val_; } /** * Checks whether two handles are the same. * Returns true if both are empty, or if the objects to which they refer * are identical. * * If both handles refer to JS objects, this is the same as strict equality. * For primitives, such as numbers or strings, a `false` return value does not * indicate that the values aren't equal in the JavaScript sense. * Use `Value::StrictEquals()` to check primitives for equality. */ template <class S> V8_INLINE bool operator==(const Local<S>& that) const { internal::Address* a = reinterpret_cast<internal::Address*>(this->val_); internal::Address* b = reinterpret_cast<internal::Address*>(that.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } template <class S> V8_INLINE bool operator==(const PersistentBase<S>& that) const { internal::Address* a = reinterpret_cast<internal::Address*>(this->val_); internal::Address* b = reinterpret_cast<internal::Address*>(that.val_); if (a == nullptr) return b == nullptr; if (b == nullptr) return false; return *a == *b; } /** * Checks whether two handles are different. * Returns true if only one of the handles is empty, or if * the objects to which they refer are different. * * If both handles refer to JS objects, this is the same as strict * non-equality. For primitives, such as numbers or strings, a `true` return * value does not indicate that the values aren't equal in the JavaScript * sense. Use `Value::StrictEquals()` to check primitives for equality. */ template <class S> V8_INLINE bool operator!=(const Local<S>& that) const { return !operator==(that); } template <class S> V8_INLINE bool operator!=(const Persistent<S>& that) const { return !operator==(that); } /** * Cast a handle to a subclass, e.g. Local<Value> to Local<Object>. * This is only valid if the handle actually refers to a value of the * target type. */ template <class S> V8_INLINE static Local<T> Cast(Local<S> that) { #ifdef V8_ENABLE_CHECKS // If we're going to perform the type check then we have to check // that the handle isn't empty before doing the checked cast. if (that.IsEmpty()) return Local<T>(); #endif return Local<T>(T::Cast(*that)); } /** * Calling this is equivalent to Local<S>::Cast(). * In particular, this is only valid if the handle actually refers to a value * of the target type. */ template <class S> V8_INLINE Local<S> As() const { return Local<S>::Cast(*this); } /** * Create a local handle for the content of another handle. * The referee is kept alive by the local handle even when * the original handle is destroyed/disposed. */ V8_INLINE static Local<T> New(Isolate* isolate, Local<T> that) { return New(isolate, that.val_); } V8_INLINE static Local<T> New(Isolate* isolate, const PersistentBase<T>& that) { return New(isolate, that.val_); } V8_INLINE static Local<T> New(Isolate* isolate, const BasicTracedReference<T>& that) { return New(isolate, *that); } private: friend class TracedReferenceBase; friend class Utils; template <class F> friend class Eternal; template <class F> friend class PersistentBase; template <class F, class M> friend class Persistent; template <class F> friend class Local; template <class F> friend class MaybeLocal; template <class F> friend class FunctionCallbackInfo; template <class F> friend class PropertyCallbackInfo; friend class String; friend class Object; friend class Context; friend class Isolate; friend class Private; template <class F> friend class internal::CustomArguments; friend Local<Primitive> Undefined(Isolate* isolate); friend Local<Primitive> Null(Isolate* isolate); friend Local<Boolean> True(Isolate* isolate); friend Local<Boolean> False(Isolate* isolate); friend class HandleScope; friend class EscapableHandleScope; template <class F1, class F2, class F3> friend class PersistentValueMapBase; template <class F1, class F2> friend class PersistentValueVector; template <class F> friend class ReturnValue; template <class F> friend class Traced; template <class F> friend class BasicTracedReference; template <class F> friend class TracedReference; explicit V8_INLINE Local(T* that) : val_(that) {} V8_INLINE static Local<T> New(Isolate* isolate, T* that) { if (that == nullptr) return Local<T>(); T* that_ptr = that; internal::Address* p = reinterpret_cast<internal::Address*>(that_ptr); return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( reinterpret_cast<internal::Isolate*>(isolate), *p))); } T* val_; }; #if !defined(V8_IMMINENT_DEPRECATION_WARNINGS) // Handle is an alias for Local for historical reasons. template <class T> using Handle = Local<T>; #endif /** * A MaybeLocal<> is a wrapper around Local<> that enforces a check whether * the Local<> is empty before it can be used. * * If an API method returns a MaybeLocal<>, the API method can potentially fail * either because an exception is thrown, or because an exception is pending, * e.g. because a previous API call threw an exception that hasn't been caught * yet, or because a TerminateExecution exception was thrown. In that case, an * empty MaybeLocal is returned. */ template <class T> class MaybeLocal { public: V8_INLINE MaybeLocal() : val_(nullptr) {} template <class S> V8_INLINE MaybeLocal(Local<S> that) : val_(reinterpret_cast<T*>(*that)) { static_assert(std::is_base_of<T, S>::value, "type check"); } V8_INLINE bool IsEmpty() const { return val_ == nullptr; } /** * Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty, * |false| is returned and |out| is left untouched. */ template <class S> V8_WARN_UNUSED_RESULT V8_INLINE bool ToLocal(Local<S>* out) const { out->val_ = IsEmpty() ? nullptr : this->val_; return !IsEmpty(); } /** * Converts this MaybeLocal<> to a Local<>. If this MaybeLocal<> is empty, * V8 will crash the process. */ V8_INLINE Local<T> ToLocalChecked() { if (V8_UNLIKELY(val_ == nullptr)) api_internal::ToLocalEmpty(); return Local<T>(val_); } /** * Converts this MaybeLocal<> to a Local<>, using a default value if this * MaybeLocal<> is empty. */ template <class S> V8_INLINE Local<S> FromMaybe(Local<S> default_value) const { return IsEmpty() ? default_value : Local<S>(val_); } private: T* val_; }; /** * A HandleScope which first allocates a handle in the current scope * which will be later filled with the escape value. */ class V8_EXPORT V8_NODISCARD EscapableHandleScope : public HandleScope { public: explicit EscapableHandleScope(Isolate* isolate); V8_INLINE ~EscapableHandleScope() = default; /** * Pushes the value into the previous scope and returns a handle to it. * Cannot be called twice. */ template <class T> V8_INLINE Local<T> Escape(Local<T> value) { internal::Address* slot = Escape(reinterpret_cast<internal::Address*>(*value)); return Local<T>(reinterpret_cast<T*>(slot)); } template <class T> V8_INLINE MaybeLocal<T> EscapeMaybe(MaybeLocal<T> value) { return Escape(value.FromMaybe(Local<T>())); } EscapableHandleScope(const EscapableHandleScope&) = delete; void operator=(const EscapableHandleScope&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Address* Escape(internal::Address* escape_value); internal::Address* escape_slot_; }; /** * A SealHandleScope acts like a handle scope in which no handle allocations * are allowed. It can be useful for debugging handle leaks. * Handles can be allocated within inner normal HandleScopes. */ class V8_EXPORT V8_NODISCARD SealHandleScope { public: explicit SealHandleScope(Isolate* isolate); ~SealHandleScope(); SealHandleScope(const SealHandleScope&) = delete; void operator=(const SealHandleScope&) = delete; private: // Declaring operator new and delete as deleted is not spec compliant. // Therefore declare them private instead to disable dynamic alloc void* operator new(size_t size); void* operator new[](size_t size); void operator delete(void*, size_t); void operator delete[](void*, size_t); internal::Isolate* const isolate_; internal::Address* prev_limit_; int prev_sealed_level_; }; } // namespace v8 #endif // INCLUDE_V8_LOCAL_HANDLE_H_