Server IP : 85.214.239.14 / Your IP : 18.191.132.7 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/2/cwd/proc/3/root/proc/2/root/usr/include/postgresql/9.6/server/storage/ |
Upload File : |
/*------------------------------------------------------------------------- * * s_lock.h * Hardware-dependent implementation of spinlocks. * * NOTE: none of the macros in this file are intended to be called directly. * Call them through the hardware-independent macros in spin.h. * * The following hardware-dependent macros must be provided for each * supported platform: * * void S_INIT_LOCK(slock_t *lock) * Initialize a spinlock (to the unlocked state). * * int S_LOCK(slock_t *lock) * Acquire a spinlock, waiting if necessary. * Time out and abort() if unable to acquire the lock in a * "reasonable" amount of time --- typically ~ 1 minute. * Should return number of "delays"; see s_lock.c * * void S_UNLOCK(slock_t *lock) * Unlock a previously acquired lock. * * bool S_LOCK_FREE(slock_t *lock) * Tests if the lock is free. Returns TRUE if free, FALSE if locked. * This does *not* change the state of the lock. * * void SPIN_DELAY(void) * Delay operation to occur inside spinlock wait loop. * * Note to implementors: there are default implementations for all these * macros at the bottom of the file. Check if your platform can use * these or needs to override them. * * Usually, S_LOCK() is implemented in terms of even lower-level macros * TAS() and TAS_SPIN(): * * int TAS(slock_t *lock) * Atomic test-and-set instruction. Attempt to acquire the lock, * but do *not* wait. Returns 0 if successful, nonzero if unable * to acquire the lock. * * int TAS_SPIN(slock_t *lock) * Like TAS(), but this version is used when waiting for a lock * previously found to be contended. By default, this is the * same as TAS(), but on some architectures it's better to poll a * contended lock using an unlocked instruction and retry the * atomic test-and-set only when it appears free. * * TAS() and TAS_SPIN() are NOT part of the API, and should never be called * directly. * * CAUTION: on some platforms TAS() and/or TAS_SPIN() may sometimes report * failure to acquire a lock even when the lock is not locked. For example, * on Alpha TAS() will "fail" if interrupted. Therefore a retry loop must * always be used, even if you are certain the lock is free. * * It is the responsibility of these macros to make sure that the compiler * does not re-order accesses to shared memory to precede the actual lock * acquisition, or follow the lock release. Prior to PostgreSQL 9.5, this * was the caller's responsibility, which meant that callers had to use * volatile-qualified pointers to refer to both the spinlock itself and the * shared data being accessed within the spinlocked critical section. This * was notationally awkward, easy to forget (and thus error-prone), and * prevented some useful compiler optimizations. For these reasons, we * now require that the macros themselves prevent compiler re-ordering, * so that the caller doesn't need to take special precautions. * * On platforms with weak memory ordering, the TAS(), TAS_SPIN(), and * S_UNLOCK() macros must further include hardware-level memory fence * instructions to prevent similar re-ordering at the hardware level. * TAS() and TAS_SPIN() must guarantee that loads and stores issued after * the macro are not executed until the lock has been obtained. Conversely, * S_UNLOCK() must guarantee that loads and stores issued before the macro * have been executed before the lock is released. * * On most supported platforms, TAS() uses a tas() function written * in assembly language to execute a hardware atomic-test-and-set * instruction. Equivalent OS-supplied mutex routines could be used too. * * If no system-specific TAS() is available (ie, HAVE_SPINLOCKS is not * defined), then we fall back on an emulation that uses SysV semaphores * (see spin.c). This emulation will be MUCH MUCH slower than a proper TAS() * implementation, because of the cost of a kernel call per lock or unlock. * An old report is that Postgres spends around 40% of its time in semop(2) * when using the SysV semaphore code. * * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/storage/s_lock.h * *------------------------------------------------------------------------- */ #ifndef S_LOCK_H #define S_LOCK_H #ifdef FRONTEND #error "s_lock.h may not be included from frontend code" #endif #ifdef HAVE_SPINLOCKS /* skip spinlocks if requested */ #if defined(__GNUC__) || defined(__INTEL_COMPILER) /************************************************************************* * All the gcc inlines * Gcc consistently defines the CPU as __cpu__. * Other compilers use __cpu or __cpu__ so we test for both in those cases. */ /*---------- * Standard gcc asm format (assuming "volatile slock_t *lock"): __asm__ __volatile__( " instruction \n" " instruction \n" " instruction \n" : "=r"(_res), "+m"(*lock) // return register, in/out lock value : "r"(lock) // lock pointer, in input register : "memory", "cc"); // show clobbered registers here * The output-operands list (after first colon) should always include * "+m"(*lock), whether or not the asm code actually refers to this * operand directly. This ensures that gcc believes the value in the * lock variable is used and set by the asm code. Also, the clobbers * list (after third colon) should always include "memory"; this prevents * gcc from thinking it can cache the values of shared-memory fields * across the asm code. Add "cc" if your asm code changes the condition * code register, and also list any temp registers the code uses. *---------- */ #ifdef __i386__ /* 32-bit i386 */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res = 1; /* * Use a non-locking test before asserting the bus lock. Note that the * extra test appears to be a small loss on some x86 platforms and a small * win on others; it's by no means clear that we should keep it. * * When this was last tested, we didn't have separate TAS() and TAS_SPIN() * macros. Nowadays it probably would be better to do a non-locking test * in TAS_SPIN() but not in TAS(), like on x86_64, but no-one's done the * testing to verify that. Without some empirical evidence, better to * leave it alone. */ __asm__ __volatile__( " cmpb $0,%1 \n" " jne 1f \n" " lock \n" " xchgb %0,%1 \n" "1: \n" : "+q"(_res), "+m"(*lock) : /* no inputs */ : "memory", "cc"); return (int) _res; } #define SPIN_DELAY() spin_delay() static __inline__ void spin_delay(void) { /* * This sequence is equivalent to the PAUSE instruction ("rep" is * ignored by old IA32 processors if the following instruction is * not a string operation); the IA-32 Architecture Software * Developer's Manual, Vol. 3, Section 7.7.2 describes why using * PAUSE in the inner loop of a spin lock is necessary for good * performance: * * The PAUSE instruction improves the performance of IA-32 * processors supporting Hyper-Threading Technology when * executing spin-wait loops and other routines where one * thread is accessing a shared lock or semaphore in a tight * polling loop. When executing a spin-wait loop, the * processor can suffer a severe performance penalty when * exiting the loop because it detects a possible memory order * violation and flushes the core processor's pipeline. The * PAUSE instruction provides a hint to the processor that the * code sequence is a spin-wait loop. The processor uses this * hint to avoid the memory order violation and prevent the * pipeline flush. In addition, the PAUSE instruction * de-pipelines the spin-wait loop to prevent it from * consuming execution resources excessively. */ __asm__ __volatile__( " rep; nop \n"); } #endif /* __i386__ */ #ifdef __x86_64__ /* AMD Opteron, Intel EM64T */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) /* * On Intel EM64T, it's a win to use a non-locking test before the xchg proper, * but only when spinning. * * See also Implementing Scalable Atomic Locks for Multi-Core Intel(tm) EM64T * and IA32, by Michael Chynoweth and Mary R. Lee. As of this writing, it is * available at: * http://software.intel.com/en-us/articles/implementing-scalable-atomic-locks-for-multi-core-intel-em64t-and-ia32-architectures */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res = 1; __asm__ __volatile__( " lock \n" " xchgb %0,%1 \n" : "+q"(_res), "+m"(*lock) : /* no inputs */ : "memory", "cc"); return (int) _res; } #define SPIN_DELAY() spin_delay() static __inline__ void spin_delay(void) { /* * Adding a PAUSE in the spin delay loop is demonstrably a no-op on * Opteron, but it may be of some use on EM64T, so we keep it. */ __asm__ __volatile__( " rep; nop \n"); } #endif /* __x86_64__ */ #if defined(__ia64__) || defined(__ia64) /* * Intel Itanium, gcc or Intel's compiler. * * Itanium has weak memory ordering, but we rely on the compiler to enforce * strict ordering of accesses to volatile data. In particular, while the * xchg instruction implicitly acts as a memory barrier with 'acquire' * semantics, we do not have an explicit memory fence instruction in the * S_UNLOCK macro. We use a regular assignment to clear the spinlock, and * trust that the compiler marks the generated store instruction with the * ".rel" opcode. * * Testing shows that assumption to hold on gcc, although I could not find * any explicit statement on that in the gcc manual. In Intel's compiler, * the -m[no-]serialize-volatile option controls that, and testing shows that * it is enabled by default. * * While icc accepts gcc asm blocks on x86[_64], this is not true on ia64 * (at least not in icc versions before 12.x). So we have to carry a separate * compiler-intrinsic-based implementation for it. */ #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) /* On IA64, it's a win to use a non-locking test before the xchg proper */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) #ifndef __INTEL_COMPILER static __inline__ int tas(volatile slock_t *lock) { long int ret; __asm__ __volatile__( " xchg4 %0=%1,%2 \n" : "=r"(ret), "+m"(*lock) : "r"(1) : "memory"); return (int) ret; } #else /* __INTEL_COMPILER */ static __inline__ int tas(volatile slock_t *lock) { int ret; ret = _InterlockedExchange(lock,1); /* this is a xchg asm macro */ return ret; } /* icc can't use the regular gcc S_UNLOCK() macro either in this case */ #define S_UNLOCK(lock) \ do { __memory_barrier(); *(lock) = 0; } while (0) #endif /* __INTEL_COMPILER */ #endif /* __ia64__ || __ia64 */ /* * On ARM and ARM64, we use __sync_lock_test_and_set(int *, int) if available. * * We use the int-width variant of the builtin because it works on more chips * than other widths. */ #if defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(__aarch64) #ifdef HAVE_GCC__SYNC_INT32_TAS #define HAS_TEST_AND_SET #define TAS(lock) tas(lock) typedef int slock_t; static __inline__ int tas(volatile slock_t *lock) { return __sync_lock_test_and_set(lock, 1); } #define S_UNLOCK(lock) __sync_lock_release(lock) #endif /* HAVE_GCC__SYNC_INT32_TAS */ #endif /* __arm__ || __arm || __aarch64__ || __aarch64 */ /* * RISC-V likewise uses __sync_lock_test_and_set(int *, int) if available. */ #if defined(__riscv) #ifdef HAVE_GCC__SYNC_INT32_TAS #define HAS_TEST_AND_SET #define TAS(lock) tas(lock) typedef int slock_t; static __inline__ int tas(volatile slock_t *lock) { return __sync_lock_test_and_set(lock, 1); } #define S_UNLOCK(lock) __sync_lock_release(lock) #endif /* HAVE_GCC__SYNC_INT32_TAS */ #endif /* __riscv */ /* S/390 and S/390x Linux (32- and 64-bit zSeries) */ #if defined(__s390__) || defined(__s390x__) #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { int _res = 0; __asm__ __volatile__( " cs %0,%3,0(%2) \n" : "+d"(_res), "+m"(*lock) : "a"(lock), "d"(1) : "memory", "cc"); return _res; } #endif /* __s390__ || __s390x__ */ #if defined(__sparc__) /* Sparc */ /* * Solaris has always run sparc processors in TSO (total store) mode, but * linux didn't use to and the *BSDs still don't. So, be careful about * acquire/release semantics. The CPU will treat superfluous membars as * NOPs, so it's just code space. */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res; /* * See comment in /pg/backend/port/tas/solaris_sparc.s for why this * uses "ldstub", and that file uses "cas". gcc currently generates * sparcv7-targeted binaries, so "cas" use isn't possible. */ __asm__ __volatile__( " ldstub [%2], %0 \n" : "=r"(_res), "+m"(*lock) : "r"(lock) : "memory"); #if defined(__sparcv7) || defined(__sparc_v7__) /* * No stbar or membar available, luckily no actually produced hardware * requires a barrier. */ #elif defined(__sparcv8) || defined(__sparc_v8__) /* stbar is available (and required for both PSO, RMO), membar isn't */ __asm__ __volatile__ ("stbar \n":::"memory"); #else /* * #LoadStore (RMO) | #LoadLoad (RMO) together are the appropriate acquire * barrier for sparcv8+ upwards. */ __asm__ __volatile__ ("membar #LoadStore | #LoadLoad \n":::"memory"); #endif return (int) _res; } #if defined(__sparcv7) || defined(__sparc_v7__) /* * No stbar or membar available, luckily no actually produced hardware * requires a barrier. We fall through to the default gcc definition of * S_UNLOCK in this case. */ #elif defined(__sparcv8) || defined(__sparc_v8__) /* stbar is available (and required for both PSO, RMO), membar isn't */ #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__ ("stbar \n":::"memory"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #else /* * #LoadStore (RMO) | #StoreStore (RMO, PSO) together are the appropriate * release barrier for sparcv8+ upwards. */ #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__ ("membar #LoadStore | #StoreStore \n":::"memory"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #endif #endif /* __sparc__ */ /* PowerPC */ #if defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__) #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) /* On PPC, it's a win to use a non-locking test before the lwarx */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) /* * The second operand of addi can hold a constant zero or a register number, * hence constraint "=&b" to avoid allocating r0. "b" stands for "address * base register"; most operands having this register-or-zero property are * address bases, e.g. the second operand of lwax. * * NOTE: per the Enhanced PowerPC Architecture manual, v1.0 dated 7-May-2002, * an isync is a sufficient synchronization barrier after a lwarx/stwcx loop. * On newer machines, we can use lwsync instead for better performance. * * Ordinarily, we'd code the branches here using GNU-style local symbols, that * is "1f" referencing "1:" and so on. But some people run gcc on AIX with * IBM's assembler as backend, and IBM's assembler doesn't do local symbols. * So hand-code the branch offsets; fortunately, all PPC instructions are * exactly 4 bytes each, so it's not too hard to count. */ static __inline__ int tas(volatile slock_t *lock) { slock_t _t; int _res; __asm__ __volatile__( #ifdef USE_PPC_LWARX_MUTEX_HINT " lwarx %0,0,%3,1 \n" #else " lwarx %0,0,%3 \n" #endif " cmpwi %0,0 \n" " bne $+16 \n" /* branch to li %1,1 */ " addi %0,%0,1 \n" " stwcx. %0,0,%3 \n" " beq $+12 \n" /* branch to lwsync/isync */ " li %1,1 \n" " b $+12 \n" /* branch to end of asm sequence */ #ifdef USE_PPC_LWSYNC " lwsync \n" #else " isync \n" #endif " li %1,0 \n" : "=&b"(_t), "=r"(_res), "+m"(*lock) : "r"(lock) : "memory", "cc"); return _res; } /* * PowerPC S_UNLOCK is almost standard but requires a "sync" instruction. * On newer machines, we can use lwsync instead for better performance. */ #ifdef USE_PPC_LWSYNC #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__ (" lwsync \n" ::: "memory"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #else #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__ (" sync \n" ::: "memory"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #endif /* USE_PPC_LWSYNC */ #endif /* powerpc */ /* Linux Motorola 68k */ #if (defined(__mc68000__) || defined(__m68k__)) && defined(__linux__) #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int rv; __asm__ __volatile__( " clrl %0 \n" " tas %1 \n" " sne %0 \n" : "=d"(rv), "+m"(*lock) : /* no inputs */ : "memory", "cc"); return rv; } #endif /* (__mc68000__ || __m68k__) && __linux__ */ /* Motorola 88k */ #if defined(__m88k__) #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register slock_t _res = 1; __asm__ __volatile__( " xmem %0, %2, %%r0 \n" : "+r"(_res), "+m"(*lock) : "r"(lock) : "memory"); return (int) _res; } #endif /* __m88k__ */ /* * VAXen -- even multiprocessor ones * (thanks to Tom Ivar Helbekkmo) */ #if defined(__vax__) #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int _res; __asm__ __volatile__( " movl $1, %0 \n" " bbssi $0, (%2), 1f \n" " clrl %0 \n" "1: \n" : "=&r"(_res), "+m"(*lock) : "r"(lock) : "memory"); return _res; } #endif /* __vax__ */ #if defined(__mips__) && !defined(__sgi) /* non-SGI MIPS */ #define HAS_TEST_AND_SET typedef unsigned int slock_t; #define TAS(lock) tas(lock) /* * Original MIPS-I processors lacked the LL/SC instructions, but if we are * so unfortunate as to be running on one of those, we expect that the kernel * will handle the illegal-instruction traps and emulate them for us. On * anything newer (and really, MIPS-I is extinct) LL/SC is the only sane * choice because any other synchronization method must involve a kernel * call. Unfortunately, many toolchains still default to MIPS-I as the * codegen target; if the symbol __mips shows that that's the case, we * have to force the assembler to accept LL/SC. * * R10000 and up processors require a separate SYNC, which has the same * issues as LL/SC. */ #if __mips < 2 #define MIPS_SET_MIPS2 " .set mips2 \n" #else #define MIPS_SET_MIPS2 #endif static __inline__ int tas(volatile slock_t *lock) { register volatile slock_t *_l = lock; register int _res; register int _tmp; __asm__ __volatile__( " .set push \n" MIPS_SET_MIPS2 " .set noreorder \n" " .set nomacro \n" " ll %0, %2 \n" " or %1, %0, 1 \n" " sc %1, %2 \n" " xori %1, 1 \n" " or %0, %0, %1 \n" " sync \n" " .set pop " : "=&r" (_res), "=&r" (_tmp), "+R" (*_l) : /* no inputs */ : "memory"); return _res; } /* MIPS S_UNLOCK is almost standard but requires a "sync" instruction */ #define S_UNLOCK(lock) \ do \ { \ __asm__ __volatile__( \ " .set push \n" \ MIPS_SET_MIPS2 \ " .set noreorder \n" \ " .set nomacro \n" \ " sync \n" \ " .set pop " \ : /* no outputs */ \ : /* no inputs */ \ : "memory"); \ *((volatile slock_t *) (lock)) = 0; \ } while (0) #endif /* __mips__ && !__sgi */ #if defined(__m32r__) && defined(HAVE_SYS_TAS_H) /* Renesas' M32R */ #define HAS_TEST_AND_SET #include <sys/tas.h> typedef int slock_t; #define TAS(lock) tas(lock) #endif /* __m32r__ */ #if defined(__sh__) /* Renesas' SuperH */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) static __inline__ int tas(volatile slock_t *lock) { register int _res; /* * This asm is coded as if %0 could be any register, but actually SuperH * restricts the target of xor-immediate to be R0. That's handled by * the "z" constraint on _res. */ __asm__ __volatile__( " tas.b @%2 \n" " movt %0 \n" " xor #1,%0 \n" : "=z"(_res), "+m"(*lock) : "r"(lock) : "memory", "t"); return _res; } #endif /* __sh__ */ /* These live in s_lock.c, but only for gcc */ #if defined(__m68k__) && !defined(__linux__) /* non-Linux Motorola 68k */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #endif /* * Default implementation of S_UNLOCK() for gcc/icc. * * Note that this implementation is unsafe for any platform that can reorder * a memory access (either load or store) after a following store. That * happens not to be possible on x86 and most legacy architectures (some are * single-processor!), but many modern systems have weaker memory ordering. * Those that do must define their own version of S_UNLOCK() rather than * relying on this one. */ #if !defined(S_UNLOCK) #define S_UNLOCK(lock) \ do { __asm__ __volatile__("" : : : "memory"); *(lock) = 0; } while (0) #endif #endif /* defined(__GNUC__) || defined(__INTEL_COMPILER) */ /* * --------------------------------------------------------------------- * Platforms that use non-gcc inline assembly: * --------------------------------------------------------------------- */ #if !defined(HAS_TEST_AND_SET) /* We didn't trigger above, let's try here */ #if defined(USE_UNIVEL_CC) /* Unixware compiler */ #define HAS_TEST_AND_SET typedef unsigned char slock_t; #define TAS(lock) tas(lock) asm int tas(volatile slock_t *s_lock) { /* UNIVEL wants %mem in column 1, so we don't pgindent this file */ %mem s_lock pushl %ebx movl s_lock, %ebx movl $255, %eax lock xchgb %al, (%ebx) popl %ebx } #endif /* defined(USE_UNIVEL_CC) */ #if defined(__hppa) || defined(__hppa__) /* HP PA-RISC, GCC and HP compilers */ /* * HP's PA-RISC * * See src/backend/port/hpux/tas.c.template for details about LDCWX. Because * LDCWX requires a 16-byte-aligned address, we declare slock_t as a 16-byte * struct. The active word in the struct is whichever has the aligned address; * the other three words just sit at -1. * * When using gcc, we can inline the required assembly code. */ #define HAS_TEST_AND_SET typedef struct { int sema[4]; } slock_t; #define TAS_ACTIVE_WORD(lock) ((volatile int *) (((uintptr_t) (lock) + 15) & ~15)) #if defined(__GNUC__) static __inline__ int tas(volatile slock_t *lock) { volatile int *lockword = TAS_ACTIVE_WORD(lock); register int lockval; __asm__ __volatile__( " ldcwx 0(0,%2),%0 \n" : "=r"(lockval), "+m"(*lockword) : "r"(lockword) : "memory"); return (lockval == 0); } /* * The hppa implementation doesn't follow the rules of this files and provides * a gcc specific implementation outside of the above defined(__GNUC__). It * does so to avoid duplication between the HP compiler and gcc. So undefine * the generic fallback S_UNLOCK from above. */ #ifdef S_UNLOCK #undef S_UNLOCK #endif #define S_UNLOCK(lock) \ do { \ __asm__ __volatile__("" : : : "memory"); \ *TAS_ACTIVE_WORD(lock) = -1; \ } while (0) #endif /* __GNUC__ */ #define S_INIT_LOCK(lock) \ do { \ volatile slock_t *lock_ = (lock); \ lock_->sema[0] = -1; \ lock_->sema[1] = -1; \ lock_->sema[2] = -1; \ lock_->sema[3] = -1; \ } while (0) #define S_LOCK_FREE(lock) (*TAS_ACTIVE_WORD(lock) != 0) #endif /* __hppa || __hppa__ */ #if defined(__hpux) && defined(__ia64) && !defined(__GNUC__) /* * HP-UX on Itanium, non-gcc/icc compiler * * We assume that the compiler enforces strict ordering of loads/stores on * volatile data (see comments on the gcc-version earlier in this file). * Note that this assumption does *not* hold if you use the * +Ovolatile=__unordered option on the HP-UX compiler, so don't do that. * * See also Implementing Spinlocks on the Intel Itanium Architecture and * PA-RISC, by Tor Ekqvist and David Graves, for more information. As of * this writing, version 1.0 of the manual is available at: * http://h21007.www2.hp.com/portal/download/files/unprot/itanium/spinlocks.pdf */ #define HAS_TEST_AND_SET typedef unsigned int slock_t; #include <ia64/sys/inline.h> #define TAS(lock) _Asm_xchg(_SZ_W, lock, 1, _LDHINT_NONE) /* On IA64, it's a win to use a non-locking test before the xchg proper */ #define TAS_SPIN(lock) (*(lock) ? 1 : TAS(lock)) #define S_UNLOCK(lock) \ do { _Asm_mf(); (*(lock)) = 0; } while (0) #endif /* HPUX on IA64, non gcc/icc */ #if defined(_AIX) /* AIX */ /* * AIX (POWER) */ #define HAS_TEST_AND_SET #include <sys/atomic_op.h> typedef int slock_t; #define TAS(lock) _check_lock((slock_t *) (lock), 0, 1) #define S_UNLOCK(lock) _clear_lock((slock_t *) (lock), 0) #endif /* _AIX */ /* These are in sunstudio_(sparc|x86).s */ #if defined(__SUNPRO_C) && (defined(__i386) || defined(__x86_64__) || defined(__sparc__) || defined(__sparc)) #define HAS_TEST_AND_SET #if defined(__i386) || defined(__x86_64__) || defined(__sparcv9) || defined(__sparcv8plus) typedef unsigned int slock_t; #else typedef unsigned char slock_t; #endif extern slock_t pg_atomic_cas(volatile slock_t *lock, slock_t with, slock_t cmp); #define TAS(a) (pg_atomic_cas((a), 1, 0) != 0) #endif #ifdef WIN32_ONLY_COMPILER typedef LONG slock_t; #define HAS_TEST_AND_SET #define TAS(lock) (InterlockedCompareExchange(lock, 1, 0)) #define SPIN_DELAY() spin_delay() /* If using Visual C++ on Win64, inline assembly is unavailable. * Use a _mm_pause intrinsic instead of rep nop. */ #if defined(_WIN64) static __forceinline void spin_delay(void) { _mm_pause(); } #else static __forceinline void spin_delay(void) { /* See comment for gcc code. Same code, MASM syntax */ __asm rep nop; } #endif #include <intrin.h> #pragma intrinsic(_ReadWriteBarrier) #define S_UNLOCK(lock) \ do { _ReadWriteBarrier(); (*(lock)) = 0; } while (0) #endif #endif /* !defined(HAS_TEST_AND_SET) */ /* Blow up if we didn't have any way to do spinlocks */ #ifndef HAS_TEST_AND_SET #error PostgreSQL does not have native spinlock support on this platform. To continue the compilation, rerun configure using --disable-spinlocks. However, performance will be poor. Please report this to pgsql-bugs@postgresql.org. #endif #else /* !HAVE_SPINLOCKS */ /* * Fake spinlock implementation using semaphores --- slow and prone * to fall foul of kernel limits on number of semaphores, so don't use this * unless you must! The subroutines appear in spin.c. */ typedef int slock_t; extern bool s_lock_free_sema(volatile slock_t *lock); extern void s_unlock_sema(volatile slock_t *lock); extern void s_init_lock_sema(volatile slock_t *lock, bool nested); extern int tas_sema(volatile slock_t *lock); #define S_LOCK_FREE(lock) s_lock_free_sema(lock) #define S_UNLOCK(lock) s_unlock_sema(lock) #define S_INIT_LOCK(lock) s_init_lock_sema(lock, false) #define TAS(lock) tas_sema(lock) #endif /* HAVE_SPINLOCKS */ /* * Default Definitions - override these above as needed. */ #if !defined(S_LOCK) #define S_LOCK(lock) \ (TAS(lock) ? s_lock((lock), __FILE__, __LINE__, PG_FUNCNAME_MACRO) : 0) #endif /* S_LOCK */ #if !defined(S_LOCK_FREE) #define S_LOCK_FREE(lock) (*(lock) == 0) #endif /* S_LOCK_FREE */ #if !defined(S_UNLOCK) /* * Our default implementation of S_UNLOCK is essentially *(lock) = 0. This * is unsafe if the platform can reorder a memory access (either load or * store) after a following store; platforms where this is possible must * define their own S_UNLOCK. But CPU reordering is not the only concern: * if we simply defined S_UNLOCK() as an inline macro, the compiler might * reorder instructions from inside the critical section to occur after the * lock release. Since the compiler probably can't know what the external * function s_unlock is doing, putting the same logic there should be adequate. * A sufficiently-smart globally optimizing compiler could break that * assumption, though, and the cost of a function call for every spinlock * release may hurt performance significantly, so we use this implementation * only for platforms where we don't know of a suitable intrinsic. For the * most part, those are relatively obscure platform/compiler combinations to * which the PostgreSQL project does not have access. */ #define USE_DEFAULT_S_UNLOCK extern void s_unlock(volatile slock_t *lock); #define S_UNLOCK(lock) s_unlock(lock) #endif /* S_UNLOCK */ #if !defined(S_INIT_LOCK) #define S_INIT_LOCK(lock) S_UNLOCK(lock) #endif /* S_INIT_LOCK */ #if !defined(SPIN_DELAY) #define SPIN_DELAY() ((void) 0) #endif /* SPIN_DELAY */ #if !defined(TAS) extern int tas(volatile slock_t *lock); /* in port/.../tas.s, or * s_lock.c */ #define TAS(lock) tas(lock) #endif /* TAS */ #if !defined(TAS_SPIN) #define TAS_SPIN(lock) TAS(lock) #endif /* TAS_SPIN */ extern slock_t dummy_spinlock; /* * Platform-independent out-of-line support routines */ extern int s_lock(volatile slock_t *lock, const char *file, int line, const char *func); /* Support for dynamic adjustment of spins_per_delay */ #define DEFAULT_SPINS_PER_DELAY 100 extern void set_spins_per_delay(int shared_spins_per_delay); extern int update_spins_per_delay(int shared_spins_per_delay); /* * Support for spin delay which is useful in various places where * spinlock-like procedures take place. */ typedef struct { int spins; int delays; int cur_delay; const char *file; int line; const char *func; } SpinDelayStatus; static inline void init_spin_delay(SpinDelayStatus *status, const char *file, int line, const char *func) { status->spins = 0; status->delays = 0; status->cur_delay = 0; status->file = file; status->line = line; status->func = func; } #define init_local_spin_delay(status) init_spin_delay(status, __FILE__, __LINE__, PG_FUNCNAME_MACRO) void perform_spin_delay(SpinDelayStatus *status); void finish_spin_delay(SpinDelayStatus *status); #endif /* S_LOCK_H */