Server IP : 85.214.239.14 / Your IP : 3.135.247.237 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /lib/python3/dist-packages/ansible_collections/google/cloud/plugins/modules/ |
Upload File : |
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** Type: MMv1 *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_mlengine_model description: - Represents a machine learning solution. - A model can have multiple versions, each of which is a deployed, trained model ready to receive prediction requests. The model itself is just a container. short_description: Creates a GCP Model author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: state: description: - Whether the given object should exist in GCP choices: - present - absent default: present type: str name: description: - The name specified for the model. required: true type: str description: description: - The description specified for the model when it was created. required: false type: str default_version: description: - The default version of the model. This version will be used to handle prediction requests that do not specify a version. required: false type: dict suboptions: name: description: - The name specified for the version when it was created. required: true type: str regions: description: - The list of regions where the model is going to be deployed. - Currently only one region per model is supported . elements: str required: false type: list online_prediction_logging: description: - If true, online prediction access logs are sent to StackDriver Logging. required: false type: bool online_prediction_console_logging: description: - If true, online prediction nodes send stderr and stdout streams to Stackdriver Logging. required: false type: bool labels: description: - One or more labels that you can add, to organize your models. required: false type: dict project: description: - The Google Cloud Platform project to use. type: str auth_kind: description: - The type of credential used. type: str required: true choices: - application - machineaccount - serviceaccount service_account_contents: description: - The contents of a Service Account JSON file, either in a dictionary or as a JSON string that represents it. type: jsonarg service_account_file: description: - The path of a Service Account JSON file if serviceaccount is selected as type. type: path service_account_email: description: - An optional service account email address if machineaccount is selected and the user does not wish to use the default email. type: str scopes: description: - Array of scopes to be used type: list elements: str env_type: description: - Specifies which Ansible environment you're running this module within. - This should not be set unless you know what you're doing. - This only alters the User Agent string for any API requests. type: str notes: - 'API Reference: U(https://cloud.google.com/ai-platform/prediction/docs/reference/rest/v1/projects.models)' - 'Official Documentation: U(https://cloud.google.com/ai-platform/prediction/docs/deploying-models)' - for authentication, you can set service_account_file using the C(GCP_SERVICE_ACCOUNT_FILE) env variable. - for authentication, you can set service_account_contents using the C(GCP_SERVICE_ACCOUNT_CONTENTS) env variable. - For authentication, you can set service_account_email using the C(GCP_SERVICE_ACCOUNT_EMAIL) env variable. - For authentication, you can set auth_kind using the C(GCP_AUTH_KIND) env variable. - For authentication, you can set scopes using the C(GCP_SCOPES) env variable. - Environment variables values will only be used if the playbook values are not set. - The I(service_account_email) and I(service_account_file) options are mutually exclusive. ''' EXAMPLES = ''' - name: create a model google.cloud.gcp_mlengine_model: name: "{{ resource_name | replace('-', '_') }}" description: My model regions: - us-central1 project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" state: present ''' RETURN = ''' name: description: - The name specified for the model. returned: success type: str description: description: - The description specified for the model when it was created. returned: success type: str defaultVersion: description: - The default version of the model. This version will be used to handle prediction requests that do not specify a version. returned: success type: complex contains: name: description: - The name specified for the version when it was created. returned: success type: str regions: description: - The list of regions where the model is going to be deployed. - Currently only one region per model is supported . returned: success type: list onlinePredictionLogging: description: - If true, online prediction access logs are sent to StackDriver Logging. returned: success type: bool onlinePredictionConsoleLogging: description: - If true, online prediction nodes send stderr and stdout streams to Stackdriver Logging. returned: success type: bool labels: description: - One or more labels that you can add, to organize your models. returned: success type: dict ''' ################################################################################ # Imports ################################################################################ from ansible_collections.google.cloud.plugins.module_utils.gcp_utils import ( navigate_hash, GcpSession, GcpModule, GcpRequest, remove_nones_from_dict, replace_resource_dict, ) import json import time ################################################################################ # Main ################################################################################ def main(): """Main function""" module = GcpModule( argument_spec=dict( state=dict(default='present', choices=['present', 'absent'], type='str'), name=dict(required=True, type='str'), description=dict(type='str'), default_version=dict(type='dict', options=dict(name=dict(required=True, type='str'))), regions=dict(type='list', elements='str'), online_prediction_logging=dict(type='bool'), online_prediction_console_logging=dict(type='bool'), labels=dict(type='dict'), ) ) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/cloud-platform'] state = module.params['state'] fetch = fetch_resource(module, self_link(module)) changed = False if fetch: if state == 'present': if is_different(module, fetch): update(module, self_link(module)) fetch = fetch_resource(module, self_link(module)) changed = True else: delete(module, self_link(module)) fetch = {} changed = True else: if state == 'present': fetch = create(module, collection(module)) changed = True else: fetch = {} fetch.update({'changed': changed}) module.exit_json(**fetch) def create(module, link): auth = GcpSession(module, 'mlengine') return return_if_object(module, auth.post(link, resource_to_request(module))) def update(module, link): delete(module, self_link(module)) create(module, collection(module)) def delete(module, link): auth = GcpSession(module, 'mlengine') return wait_for_operation(module, auth.delete(link)) def resource_to_request(module): request = { u'name': module.params.get('name'), u'description': module.params.get('description'), u'defaultVersion': ModelDefaultversion(module.params.get('default_version', {}), module).to_request(), u'regions': module.params.get('regions'), u'onlinePredictionLogging': module.params.get('online_prediction_logging'), u'onlinePredictionConsoleLogging': module.params.get('online_prediction_console_logging'), u'labels': module.params.get('labels'), } return_vals = {} for k, v in request.items(): if v or v is False: return_vals[k] = v return return_vals def fetch_resource(module, link, allow_not_found=True): auth = GcpSession(module, 'mlengine') return return_if_object(module, auth.get(link), allow_not_found) def self_link(module): return "https://ml.googleapis.com/v1/projects/{project}/models/{name}".format(**module.params) def collection(module): return "https://ml.googleapis.com/v1/projects/{project}/models".format(**module.params) def return_if_object(module, response, allow_not_found=False): # If not found, return nothing. if allow_not_found and response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError): module.fail_json(msg="Invalid JSON response with error: %s" % response.text) result = decode_response(result, module) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result def is_different(module, response): request = resource_to_request(module) response = response_to_hash(module, response) request = decode_response(request, module) # Remove all output-only from response. response_vals = {} for k, v in response.items(): if k in request: response_vals[k] = v request_vals = {} for k, v in request.items(): if k in response: request_vals[k] = v return GcpRequest(request_vals) != GcpRequest(response_vals) # Remove unnecessary properties from the response. # This is for doing comparisons with Ansible's current parameters. def response_to_hash(module, response): return { u'name': response.get(u'name'), u'description': response.get(u'description'), u'defaultVersion': ModelDefaultversion(response.get(u'defaultVersion', {}), module).from_response(), u'regions': response.get(u'regions'), u'onlinePredictionLogging': response.get(u'onlinePredictionLogging'), u'onlinePredictionConsoleLogging': response.get(u'onlinePredictionConsoleLogging'), u'labels': response.get(u'labels'), } def async_op_url(module, extra_data=None): if extra_data is None: extra_data = {} url = "https://ml.googleapis.com/v1/{op_id}" combined = extra_data.copy() combined.update(module.params) return url.format(**combined) def wait_for_operation(module, response): op_result = return_if_object(module, response) if op_result is None: return {} status = navigate_hash(op_result, ['done']) wait_done = wait_for_completion(status, op_result, module) raise_if_errors(wait_done, ['error'], module) return navigate_hash(wait_done, ['response']) def wait_for_completion(status, op_result, module): op_id = navigate_hash(op_result, ['name']) op_uri = async_op_url(module, {'op_id': op_id}) while not status: raise_if_errors(op_result, ['error'], module) time.sleep(1.0) op_result = fetch_resource(module, op_uri, False) status = navigate_hash(op_result, ['done']) return op_result def raise_if_errors(response, err_path, module): errors = navigate_hash(response, err_path) if errors is not None: module.fail_json(msg=errors) # Short names are given (and expected) by the API # but are returned as full names. def decode_response(response, module): if 'name' in response and 'metadata' not in response: response['name'] = response['name'].split('/')[-1] return response class ModelDefaultversion(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict({u'name': self.request.get('name')}) def from_response(self): return remove_nones_from_dict({u'name': self.request.get(u'name')}) if __name__ == '__main__': main()