Server IP : 85.214.239.14 / Your IP : 3.12.165.68 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /lib/python3/dist-packages/ansible_collections/google/cloud/plugins/modules/ |
Upload File : |
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** Type: MMv1 *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_logging_metric description: - Logs-based metric can also be used to extract values from logs and create a a distribution of the values. The distribution records the statistics of the extracted values along with an optional histogram of the values as specified by the bucket options. short_description: Creates a GCP Metric author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: state: description: - Whether the given object should exist in GCP choices: - present - absent default: present type: str name: description: - The client-assigned metric identifier. Examples - "error_count", "nginx/requests". - Metric identifiers are limited to 100 characters and can include only the following characters A-Z, a-z, 0-9, and the special characters _-.,+!*',()%/. The forward-slash character (/) denotes a hierarchy of name pieces, and it cannot be the first character of the name. required: true type: str description: description: - A description of this metric, which is used in documentation. The maximum length of the description is 8000 characters. required: false type: str filter: description: - An advanced logs filter (U(https://cloud.google.com/logging/docs/view/advanced-filters)) which is used to match log entries. required: true type: str metric_descriptor: description: - The metric descriptor associated with the logs-based metric. required: true type: dict suboptions: unit: description: - The unit in which the metric value is reported. It is only applicable if the valueType is `INT64`, `DOUBLE`, or `DISTRIBUTION`. The supported units are a subset of [The Unified Code for Units of Measure](U(http://unitsofmeasure.org/ucum.html)) standard . required: false default: '1' type: str value_type: description: - Whether the measurement is an integer, a floating-point number, etc. - Some combinations of metricKind and valueType might not be supported. - For counter metrics, set this to INT64. - 'Some valid choices include: "BOOL", "INT64", "DOUBLE", "STRING", "DISTRIBUTION", "MONEY"' required: true type: str metric_kind: description: - Whether the metric records instantaneous values, changes to a value, etc. - Some combinations of metricKind and valueType might not be supported. - For counter metrics, set this to DELTA. - 'Some valid choices include: "DELTA", "GAUGE", "CUMULATIVE"' required: true type: str labels: description: - The set of labels that can be used to describe a specific instance of this metric type. For example, the appengine.googleapis.com/http/server/response_latencies metric type has a label for the HTTP response code, response_code, so you can look at latencies for successful responses or just for responses that failed. elements: dict required: false type: list suboptions: key: description: - The label key. required: true type: str description: description: - A human-readable description for the label. required: false type: str value_type: description: - The type of data that can be assigned to the label. - 'Some valid choices include: "BOOL", "INT64", "STRING"' required: false default: STRING type: str display_name: description: - A concise name for the metric, which can be displayed in user interfaces. Use sentence case without an ending period, for example "Request count". This field is optional but it is recommended to be set for any metrics associated with user-visible concepts, such as Quota. required: false type: str label_extractors: description: - A map from a label key string to an extractor expression which is used to extract data from a log entry field and assign as the label value. Each label key specified in the LabelDescriptor must have an associated extractor expression in this map. The syntax of the extractor expression is the same as for the valueExtractor field. required: false type: dict value_extractor: description: - A valueExtractor is required when using a distribution logs-based metric to extract the values to record from a log entry. Two functions are supported for value extraction - EXTRACT(field) or REGEXP_EXTRACT(field, regex). The argument are 1. field - The name of the log entry field from which the value is to be extracted. 2. regex - A regular expression using the Google RE2 syntax (U(https://github.com/google/re2/wiki/Syntax)) with a single capture group to extract data from the specified log entry field. The value of the field is converted to a string before applying the regex. It is an error to specify a regex that does not include exactly one capture group. required: false type: str bucket_options: description: - The bucketOptions are required when the logs-based metric is using a DISTRIBUTION value type and it describes the bucket boundaries used to create a histogram of the extracted values. required: false type: dict suboptions: linear_buckets: description: - Specifies a linear sequence of buckets that all have the same width (except overflow and underflow). - Each bucket represents a constant absolute uncertainty on the specific value in the bucket. required: false type: dict suboptions: num_finite_buckets: description: - Must be greater than 0. required: false type: int width: description: - Must be greater than 0. required: false type: int offset: description: - Lower bound of the first bucket. required: false type: str exponential_buckets: description: - Specifies an exponential sequence of buckets that have a width that is proportional to the value of the lower bound. Each bucket represents a constant relative uncertainty on a specific value in the bucket. required: false type: dict suboptions: num_finite_buckets: description: - Must be greater than 0. required: false type: int growth_factor: description: - Must be greater than 1. required: false type: str scale: description: - Must be greater than 0. required: false type: str explicit_buckets: description: - Specifies a set of buckets with arbitrary widths. required: false type: dict suboptions: bounds: description: - The values must be monotonically increasing. elements: str required: true type: list project: description: - The Google Cloud Platform project to use. type: str auth_kind: description: - The type of credential used. type: str required: true choices: - application - machineaccount - serviceaccount service_account_contents: description: - The contents of a Service Account JSON file, either in a dictionary or as a JSON string that represents it. type: jsonarg service_account_file: description: - The path of a Service Account JSON file if serviceaccount is selected as type. type: path service_account_email: description: - An optional service account email address if machineaccount is selected and the user does not wish to use the default email. type: str scopes: description: - Array of scopes to be used type: list elements: str env_type: description: - Specifies which Ansible environment you're running this module within. - This should not be set unless you know what you're doing. - This only alters the User Agent string for any API requests. type: str notes: - 'API Reference: U(https://cloud.google.com/logging/docs/reference/v2/rest/v2/projects.metrics/create)' - 'Official Documentation: U(https://cloud.google.com/logging/docs/apis)' - for authentication, you can set service_account_file using the C(GCP_SERVICE_ACCOUNT_FILE) env variable. - for authentication, you can set service_account_contents using the C(GCP_SERVICE_ACCOUNT_CONTENTS) env variable. - For authentication, you can set service_account_email using the C(GCP_SERVICE_ACCOUNT_EMAIL) env variable. - For authentication, you can set auth_kind using the C(GCP_AUTH_KIND) env variable. - For authentication, you can set scopes using the C(GCP_SCOPES) env variable. - Environment variables values will only be used if the playbook values are not set. - The I(service_account_email) and I(service_account_file) options are mutually exclusive. ''' EXAMPLES = ''' - name: create a metric google.cloud.gcp_logging_metric: name: test_object filter: resource.type=gae_app AND severity>=ERROR metric_descriptor: metric_kind: DELTA value_type: DISTRIBUTION unit: '1' labels: - key: mass value_type: STRING description: amount of matter value_extractor: EXTRACT(jsonPayload.request) label_extractors: mass: EXTRACT(jsonPayload.request) bucket_options: linear_buckets: num_finite_buckets: 3 width: 1 offset: 1 project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" state: present ''' RETURN = ''' name: description: - The client-assigned metric identifier. Examples - "error_count", "nginx/requests". - Metric identifiers are limited to 100 characters and can include only the following characters A-Z, a-z, 0-9, and the special characters _-.,+!*',()%/. The forward-slash character (/) denotes a hierarchy of name pieces, and it cannot be the first character of the name. returned: success type: str description: description: - A description of this metric, which is used in documentation. The maximum length of the description is 8000 characters. returned: success type: str filter: description: - An advanced logs filter (U(https://cloud.google.com/logging/docs/view/advanced-filters)) which is used to match log entries. returned: success type: str metricDescriptor: description: - The metric descriptor associated with the logs-based metric. returned: success type: complex contains: unit: description: - The unit in which the metric value is reported. It is only applicable if the valueType is `INT64`, `DOUBLE`, or `DISTRIBUTION`. The supported units are a subset of [The Unified Code for Units of Measure](U(http://unitsofmeasure.org/ucum.html)) standard . returned: success type: str valueType: description: - Whether the measurement is an integer, a floating-point number, etc. - Some combinations of metricKind and valueType might not be supported. - For counter metrics, set this to INT64. returned: success type: str metricKind: description: - Whether the metric records instantaneous values, changes to a value, etc. - Some combinations of metricKind and valueType might not be supported. - For counter metrics, set this to DELTA. returned: success type: str labels: description: - The set of labels that can be used to describe a specific instance of this metric type. For example, the appengine.googleapis.com/http/server/response_latencies metric type has a label for the HTTP response code, response_code, so you can look at latencies for successful responses or just for responses that failed. returned: success type: complex contains: key: description: - The label key. returned: success type: str description: description: - A human-readable description for the label. returned: success type: str valueType: description: - The type of data that can be assigned to the label. returned: success type: str displayName: description: - A concise name for the metric, which can be displayed in user interfaces. Use sentence case without an ending period, for example "Request count". This field is optional but it is recommended to be set for any metrics associated with user-visible concepts, such as Quota. returned: success type: str type: description: - The metric type, including its DNS name prefix. The type is not URL-encoded. - All user-defined metric types have the DNS name `custom.googleapis.com` or `external.googleapis.com`. returned: success type: str labelExtractors: description: - A map from a label key string to an extractor expression which is used to extract data from a log entry field and assign as the label value. Each label key specified in the LabelDescriptor must have an associated extractor expression in this map. The syntax of the extractor expression is the same as for the valueExtractor field. returned: success type: dict valueExtractor: description: - A valueExtractor is required when using a distribution logs-based metric to extract the values to record from a log entry. Two functions are supported for value extraction - EXTRACT(field) or REGEXP_EXTRACT(field, regex). The argument are 1. field - The name of the log entry field from which the value is to be extracted. 2. regex - A regular expression using the Google RE2 syntax (U(https://github.com/google/re2/wiki/Syntax)) with a single capture group to extract data from the specified log entry field. The value of the field is converted to a string before applying the regex. It is an error to specify a regex that does not include exactly one capture group. returned: success type: str bucketOptions: description: - The bucketOptions are required when the logs-based metric is using a DISTRIBUTION value type and it describes the bucket boundaries used to create a histogram of the extracted values. returned: success type: complex contains: linearBuckets: description: - Specifies a linear sequence of buckets that all have the same width (except overflow and underflow). - Each bucket represents a constant absolute uncertainty on the specific value in the bucket. returned: success type: complex contains: numFiniteBuckets: description: - Must be greater than 0. returned: success type: int width: description: - Must be greater than 0. returned: success type: int offset: description: - Lower bound of the first bucket. returned: success type: str exponentialBuckets: description: - Specifies an exponential sequence of buckets that have a width that is proportional to the value of the lower bound. Each bucket represents a constant relative uncertainty on a specific value in the bucket. returned: success type: complex contains: numFiniteBuckets: description: - Must be greater than 0. returned: success type: int growthFactor: description: - Must be greater than 1. returned: success type: str scale: description: - Must be greater than 0. returned: success type: str explicitBuckets: description: - Specifies a set of buckets with arbitrary widths. returned: success type: complex contains: bounds: description: - The values must be monotonically increasing. returned: success type: list ''' ################################################################################ # Imports ################################################################################ from ansible_collections.google.cloud.plugins.module_utils.gcp_utils import ( navigate_hash, GcpSession, GcpModule, GcpRequest, remove_nones_from_dict, replace_resource_dict, ) import json ################################################################################ # Main ################################################################################ def main(): """Main function""" module = GcpModule( argument_spec=dict( state=dict(default='present', choices=['present', 'absent'], type='str'), name=dict(required=True, type='str'), description=dict(type='str'), filter=dict(required=True, type='str'), metric_descriptor=dict( required=True, type='dict', options=dict( unit=dict(default='1', type='str'), value_type=dict(required=True, type='str'), metric_kind=dict(required=True, type='str'), labels=dict( type='list', elements='dict', options=dict(key=dict(required=True, type='str'), description=dict(type='str'), value_type=dict(default='STRING', type='str')), ), display_name=dict(type='str'), ), ), label_extractors=dict(type='dict'), value_extractor=dict(type='str'), bucket_options=dict( type='dict', options=dict( linear_buckets=dict(type='dict', options=dict(num_finite_buckets=dict(type='int'), width=dict(type='int'), offset=dict(type='str'))), exponential_buckets=dict( type='dict', options=dict(num_finite_buckets=dict(type='int'), growth_factor=dict(type='str'), scale=dict(type='str')) ), explicit_buckets=dict(type='dict', options=dict(bounds=dict(required=True, type='list', elements='str'))), ), ), ) ) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/cloud-platform'] state = module.params['state'] fetch = fetch_resource(module, self_link(module)) changed = False if fetch: if state == 'present': if is_different(module, fetch): update(module, self_link(module)) fetch = fetch_resource(module, self_link(module)) changed = True else: delete(module, self_link(module)) fetch = {} changed = True else: if state == 'present': fetch = create(module, collection(module)) changed = True else: fetch = {} fetch.update({'changed': changed}) module.exit_json(**fetch) def create(module, link): auth = GcpSession(module, 'logging') return return_if_object(module, auth.post(link, resource_to_request(module))) def update(module, link): auth = GcpSession(module, 'logging') return return_if_object(module, auth.put(link, resource_to_request(module))) def delete(module, link): auth = GcpSession(module, 'logging') return return_if_object(module, auth.delete(link)) def resource_to_request(module): request = { u'name': module.params.get('name'), u'description': module.params.get('description'), u'filter': module.params.get('filter'), u'metricDescriptor': MetricMetricdescriptor(module.params.get('metric_descriptor', {}), module).to_request(), u'labelExtractors': module.params.get('label_extractors'), u'valueExtractor': module.params.get('value_extractor'), u'bucketOptions': MetricBucketoptions(module.params.get('bucket_options', {}), module).to_request(), } return_vals = {} for k, v in request.items(): if v or v is False: return_vals[k] = v return return_vals def fetch_resource(module, link, allow_not_found=True): auth = GcpSession(module, 'logging') return return_if_object(module, auth.get(link), allow_not_found) def self_link(module): return "https://logging.googleapis.com/v2/projects/{project}/metrics/{name}".format(**module.params) def collection(module): return "https://logging.googleapis.com/v2/projects/{project}/metrics".format(**module.params) def return_if_object(module, response, allow_not_found=False): # If not found, return nothing. if allow_not_found and response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError): module.fail_json(msg="Invalid JSON response with error: %s" % response.text) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result def is_different(module, response): request = resource_to_request(module) response = response_to_hash(module, response) # Remove all output-only from response. response_vals = {} for k, v in response.items(): if k in request: response_vals[k] = v request_vals = {} for k, v in request.items(): if k in response: request_vals[k] = v return GcpRequest(request_vals) != GcpRequest(response_vals) # Remove unnecessary properties from the response. # This is for doing comparisons with Ansible's current parameters. def response_to_hash(module, response): return { u'name': response.get(u'name'), u'description': response.get(u'description'), u'filter': response.get(u'filter'), u'metricDescriptor': MetricMetricdescriptor(response.get(u'metricDescriptor', {}), module).from_response(), u'labelExtractors': response.get(u'labelExtractors'), u'valueExtractor': response.get(u'valueExtractor'), u'bucketOptions': MetricBucketoptions(response.get(u'bucketOptions', {}), module).from_response(), } class MetricMetricdescriptor(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( { u'unit': self.request.get('unit'), u'valueType': self.request.get('value_type'), u'metricKind': self.request.get('metric_kind'), u'labels': MetricLabelsArray(self.request.get('labels', []), self.module).to_request(), u'displayName': self.request.get('display_name'), } ) def from_response(self): return remove_nones_from_dict( { u'unit': self.request.get(u'unit'), u'valueType': self.request.get(u'valueType'), u'metricKind': self.request.get(u'metricKind'), u'labels': MetricLabelsArray(self.request.get(u'labels', []), self.module).from_response(), u'displayName': self.request.get(u'displayName'), } ) class MetricLabelsArray(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = [] def to_request(self): items = [] for item in self.request: items.append(self._request_for_item(item)) return items def from_response(self): items = [] for item in self.request: items.append(self._response_from_item(item)) return items def _request_for_item(self, item): return remove_nones_from_dict({u'key': item.get('key'), u'description': item.get('description'), u'valueType': item.get('value_type')}) def _response_from_item(self, item): return remove_nones_from_dict( {u'key': self.module.params.get('key'), u'description': item.get(u'description'), u'valueType': self.module.params.get('value_type')} ) class MetricBucketoptions(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( { u'linearBuckets': MetricLinearbuckets(self.request.get('linear_buckets', {}), self.module).to_request(), u'exponentialBuckets': MetricExponentialbuckets(self.request.get('exponential_buckets', {}), self.module).to_request(), u'explicitBuckets': MetricExplicitbuckets(self.request.get('explicit_buckets', {}), self.module).to_request(), } ) def from_response(self): return remove_nones_from_dict( { u'linearBuckets': MetricLinearbuckets(self.request.get(u'linearBuckets', {}), self.module).from_response(), u'exponentialBuckets': MetricExponentialbuckets(self.request.get(u'exponentialBuckets', {}), self.module).from_response(), u'explicitBuckets': MetricExplicitbuckets(self.request.get(u'explicitBuckets', {}), self.module).from_response(), } ) class MetricLinearbuckets(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( {u'numFiniteBuckets': self.request.get('num_finite_buckets'), u'width': self.request.get('width'), u'offset': self.request.get('offset')} ) def from_response(self): return remove_nones_from_dict( {u'numFiniteBuckets': self.request.get(u'numFiniteBuckets'), u'width': self.request.get(u'width'), u'offset': self.request.get(u'offset')} ) class MetricExponentialbuckets(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict( { u'numFiniteBuckets': self.request.get('num_finite_buckets'), u'growthFactor': self.request.get('growth_factor'), u'scale': self.request.get('scale'), } ) def from_response(self): return remove_nones_from_dict( { u'numFiniteBuckets': self.request.get(u'numFiniteBuckets'), u'growthFactor': self.request.get(u'growthFactor'), u'scale': self.request.get(u'scale'), } ) class MetricExplicitbuckets(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict({u'bounds': self.request.get('bounds')}) def from_response(self): return remove_nones_from_dict({u'bounds': self.request.get(u'bounds')}) if __name__ == '__main__': main()