| Server IP : 85.214.239.14 / Your IP : 216.73.216.126 Web Server : Apache/2.4.65 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Mon Sep 30 15:36:27 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 8.2.29 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /lib/python3/dist-packages/ansible_collections/community/crypto/plugins/module_utils/crypto/ |
Upload File : |
# -*- coding: utf-8 -*-
#
# Copyright (c) 2019, Felix Fontein <felix@fontein.de>
# GNU General Public License v3.0+ (see LICENSES/GPL-3.0-or-later.txt or https://www.gnu.org/licenses/gpl-3.0.txt)
# SPDX-License-Identifier: GPL-3.0-or-later
from __future__ import absolute_import, division, print_function
__metaclass__ = type
import sys
def binary_exp_mod(f, e, m):
'''Computes f^e mod m in O(log e) multiplications modulo m.'''
# Compute len_e = floor(log_2(e))
len_e = -1
x = e
while x > 0:
x >>= 1
len_e += 1
# Compute f**e mod m
result = 1
for k in range(len_e, -1, -1):
result = (result * result) % m
if ((e >> k) & 1) != 0:
result = (result * f) % m
return result
def simple_gcd(a, b):
'''Compute GCD of its two inputs.'''
while b != 0:
a, b = b, a % b
return a
def quick_is_not_prime(n):
'''Does some quick checks to see if we can poke a hole into the primality of n.
A result of `False` does **not** mean that the number is prime; it just means
that we could not detect quickly whether it is not prime.
'''
if n <= 2:
return True
# The constant in the next line is the product of all primes < 200
if simple_gcd(n, 7799922041683461553249199106329813876687996789903550945093032474868511536164700810) > 1:
return True
# TODO: maybe do some iterations of Miller-Rabin to increase confidence
# (https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test)
return False
python_version = (sys.version_info[0], sys.version_info[1])
if python_version >= (2, 7) or python_version >= (3, 1):
# Ansible still supports Python 2.6 on remote nodes
def count_bits(no):
no = abs(no)
if no == 0:
return 0
return no.bit_length()
else:
# Slow, but works
def count_bits(no):
no = abs(no)
count = 0
while no > 0:
no >>= 1
count += 1
return count