Dre4m Shell
Server IP : 85.214.239.14  /  Your IP : 18.223.203.196
Web Server : Apache/2.4.62 (Debian)
System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.18
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
MySQL : OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : OFF
Directory :  /lib/python3/dist-packages/ansible_collections/community/aws/plugins/modules/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ HOME SHELL ]     

Current File : /lib/python3/dist-packages/ansible_collections/community/aws/plugins/modules/autoscaling_policy.py
#!/usr/bin/python
# Copyright: Ansible Project
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)

from __future__ import absolute_import, division, print_function
__metaclass__ = type


DOCUMENTATION = r'''
module: autoscaling_policy
short_description: Create or delete AWS scaling policies for Autoscaling groups
version_added: 1.0.0
description:
  - Can create or delete scaling policies for autoscaling groups.
  - Referenced autoscaling groups must already exist.
  - Prior to release 5.0.0 this module was called C(community.aws.ec2_scaling_policy).
    The usage did not change.
author:
  - Zacharie Eakin (@zeekin)
  - Will Thames (@willthames)
options:
  state:
    type: str
    description:
      - Register or deregister the policy.
    choices: ['present', 'absent']
    default: 'present'
  name:
    type: str
    description:
      - Unique name for the scaling policy.
    required: true
  asg_name:
    type: str
    description:
      - Name of the associated autoscaling group.
      - Required if I(state) is C(present).
  adjustment_type:
    type: str
    description:
      - The type of change in capacity of the autoscaling group.
      - Required if I(state) is C(present).
    choices:
      - ChangeInCapacity
      - ExactCapacity
      - PercentChangeInCapacity
  scaling_adjustment:
    type: int
    description:
      - The amount by which the autoscaling group is adjusted by the policy.
      - A negative number has the effect of scaling down the ASG.
      - Units are numbers of instances for C(ExactCapacity) or C(ChangeInCapacity) or percent
        of existing instances for C(PercentChangeInCapacity).
      - Required when I(policy_type) is C(SimpleScaling).
  min_adjustment_step:
    type: int
    description:
      - Minimum amount of adjustment when policy is triggered.
      - Only used when I(adjustment_type) is C(PercentChangeInCapacity).
  cooldown:
    type: int
    description:
      - The minimum period of time (in seconds) between which autoscaling actions can take place.
      - Only used when I(policy_type) is C(SimpleScaling).
  policy_type:
    type: str
    description:
      - Auto scaling adjustment policy.
    choices:
      - StepScaling
      - SimpleScaling
      - TargetTrackingScaling
    default: SimpleScaling
  metric_aggregation:
    type: str
    description:
      - The aggregation type for the CloudWatch metrics.
      - Only used when I(policy_type) is not C(SimpleScaling).
    choices:
      - Minimum
      - Maximum
      - Average
    default: Average
  step_adjustments:
    type: list
    description:
      - List of dicts containing I(lower_bound), I(upper_bound) and I(scaling_adjustment).
      - Intervals must not overlap or have a gap between them.
      - At most, one item can have an undefined I(lower_bound).
        If any item has a negative lower_bound, then there must be a step adjustment with an undefined I(lower_bound).
      - At most, one item can have an undefined I(upper_bound).
        If any item has a positive upper_bound, then there must be a step adjustment with an undefined I(upper_bound).
      - The bounds are the amount over the alarm threshold at which the adjustment will trigger.
        This means that for an alarm threshold of 50, triggering at 75 requires a lower bound of 25.
        See U(http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_StepAdjustment.html).
    elements: dict
    suboptions:
      lower_bound:
        type: int
        description:
          - The lower bound for the difference between the alarm threshold and
            the CloudWatch metric.
      upper_bound:
        type: int
        description:
          - The upper bound for the difference between the alarm threshold and
            the CloudWatch metric.
      scaling_adjustment:
        type: int
        description:
          - The amount by which to scale.
        required: true
  target_tracking_config:
    type: dict
    description:
      - Allows you to specify a I(target_tracking_config) for autoscaling policies in AWS.
      - I(target_tracking_config) can accept nested dicts for I(customized_metric_spec) or I(predefined_metric_spec).
        Each specification aligns with their boto3 equivalent.
      - Required when I(TargetTrackingScaling) policy is specified.
    version_added: 4.1.0
    suboptions:
      customized_metric_spec:
        type: dict
        description:
          - Specify a dict will be passed in as a call for C(TargetTrackingConfiguration).
        suboptions:
            metric_name:
              type: str
              description:
                - The name of the metric.
              required: true
            namespace:
              type: str
              description:
                - The namespace of the metric.
              required: true
            statistic:
              type: str
              description:
                - The statistic of the metric.
              required: true
              choices:
                - Average
                - Minimum
                - Maximum
                - SampleCount
                - Sum
            dimensions:
              type: list
              description:
                - The dimensions of the metric. The element of the list should be a dict.
              elements: dict
            unit:
              type: str
              description:
                - The unit of the metric. Reference AmazonCloudWatch API for valid Units.
      predefined_metric_spec:
        type: dict
        description:
          - Specify a dict will be passed in as a call for I(TargetTrackingConfiguration).
        suboptions:
          predefined_metric_type:
            type: str
            required: true
            description:
              - Required if C(predefined_metric_spec) is used.
            choices:
              - ASGAverageCPUUtilization
              - ASGAverageNetworkIn
              - ASGAverageNetworkOut
              - ALBRequestCountPerTarget
          resource_label:
            type: str
            description:
              - Uniquely identifies a specific ALB target group from which to determine the average request count served by your Auto Scaling group.
              - You can't specify a resource label unless the target group is attached to the Auto Scaling group.
      target_value:
        type: float
        description:
          - Specify a float number for target utilization.
          - Required when I(target_tracking_config) is specified.
        required: true
      disable_scalein:
        type: bool
        description:
          - Indicate whether scaling in by the target tracking scaling policy is disabled.
  estimated_instance_warmup:
    type: int
    description:
      - The estimated time, in seconds, until a newly launched instance can contribute to the CloudWatch metrics.
extends_documentation_fragment:
  - amazon.aws.aws
  - amazon.aws.ec2
  - amazon.aws.boto3
'''
EXAMPLES = '''
- name: Simple Scale Down policy
  community.aws.autoscaling_policy:
    state: present
    region: US-XXX
    name: "scaledown-policy"
    adjustment_type: "ChangeInCapacity"
    asg_name: "application-asg"
    scaling_adjustment: -1
    min_adjustment_step: 1
    cooldown: 300

# For an alarm with a breach threshold of 20, the
# following creates a stepped policy:
# From 20-40 (0-20 above threshold), increase by 50% of existing capacity
# From 41-infinity, increase by 100% of existing capacity
- community.aws.autoscaling_policy:
    state: present
    region: US-XXX
    name: "step-scale-up-policy"
    policy_type: StepScaling
    metric_aggregation: Maximum
    step_adjustments:
      - upper_bound: 20
        scaling_adjustment: 50
      - lower_bound: 20
        scaling_adjustment: 100
    adjustment_type: "PercentChangeInCapacity"
    asg_name: "application-asg"

- name: create TargetTracking predefined policy
  ec2_scaling_policy:
    name: "predefined-policy-1"
    policy_type: TargetTrackingScaling
    target_tracking_config:
      predefined_metric_spec:
        predefined_metric_type: ASGAverageCPUUtilization
      target_value: 98.0
    asg_name: "asg-test-1"
  register: result

- name: create TargetTracking predefined policy with resource_label
  ec2_scaling_policy:
    name: "predefined-policy-1"
    policy_type: TargetTrackingScaling
    target_tracking_config:
      predefined_metric_spec:
        predefined_metric_type: ALBRequestCountPerTarget
        resource_label: app/my-alb/778d41231d141a0f/targetgroup/my-alb-target-group/942f017f100becff
      target_value: 98.0
    asg_name: "asg-test-1"
  register: result

- name: create TargetTrackingScaling custom policy
  ec2_scaling_policy:
    name: "custom-policy-1"
    policy_type: TargetTrackingScaling
    target_tracking_config:
      customized_metric_spec:
        metric_name: metric_1
        namespace: namespace_1
        statistic: Minimum
        unit: Gigabits
        dimensions: [{'Name': 'dimension1', 'Value': 'value1'}]
      disable_scalein: true
      target_value: 98.0
    asg_name: asg-test-1
  register: result
'''

RETURN = '''
adjustment_type:
  description: Scaling policy adjustment type.
  returned: always
  type: str
  sample: PercentChangeInCapacity
alarms:
  description: Cloudwatch alarms related to the policy.
  returned: always
  type: complex
  contains:
    alarm_name:
      description: Name of the Cloudwatch alarm.
      returned: always
      type: str
      sample: cpu-very-high
    alarm_arn:
      description: ARN of the Cloudwatch alarm.
      returned: always
      type: str
      sample: arn:aws:cloudwatch:us-east-2:1234567890:alarm:cpu-very-high
arn:
  description: ARN of the scaling policy. Provided for backward compatibility, value is the same as I(policy_arn).
  returned: always
  type: str
  sample: arn:aws:autoscaling:us-east-2:123456789012:scalingPolicy:59e37526-bd27-42cf-adca-5cd3d90bc3b9:autoScalingGroupName/app-asg:policyName/app-policy
as_name:
  description: Auto Scaling Group name. Provided for backward compatibility, value is the same as I(auto_scaling_group_name).
  returned: always
  type: str
  sample: app-asg
auto_scaling_group_name:
  description: Name of Auto Scaling Group.
  returned: always
  type: str
  sample: app-asg
metric_aggregation_type:
  description: Method used to aggregate metrics.
  returned: when I(policy_type) is C(StepScaling)
  type: str
  sample: Maximum
name:
  description: Name of the scaling policy. Provided for backward compatibility, value is the same as I(policy_name).
  returned: always
  type: str
  sample: app-policy
policy_arn:
  description: ARN of scaling policy.
  returned: always
  type: str
  sample: arn:aws:autoscaling:us-east-2:123456789012:scalingPolicy:59e37526-bd27-42cf-adca-5cd3d90bc3b9:autoScalingGroupName/app-asg:policyName/app-policy
policy_name:
  description: Name of scaling policy.
  returned: always
  type: str
  sample: app-policy
policy_type:
  description: Type of auto scaling policy.
  returned: always
  type: str
  sample: StepScaling
scaling_adjustment:
  description: Adjustment to make when alarm is triggered.
  returned: When I(policy_type) is C(SimpleScaling)
  type: int
  sample: 1
step_adjustments:
  description: List of step adjustments.
  returned: always
  type: complex
  contains:
    metric_interval_lower_bound:
      description: Lower bound for metric interval.
      returned: if step has a lower bound
      type: float
      sample: 20.0
    metric_interval_upper_bound:
      description: Upper bound for metric interval.
      returned: if step has an upper bound
      type: float
      sample: 40.0
    scaling_adjustment:
      description: Adjustment to make if this step is reached.
      returned: always
      type: int
      sample: 50
'''

try:
    import botocore
except ImportError:
    pass  # caught by imported AnsibleAWSModule

from ansible_collections.amazon.aws.plugins.module_utils.ec2 import AWSRetry
from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule
from ansible.module_utils.common.dict_transformations import camel_dict_to_snake_dict


def build_target_specification(target_tracking_config):

    # Initialize an empty dict() for building TargetTrackingConfiguration policies,
    # which will be returned
    targetTrackingConfig = dict()

    if target_tracking_config.get('target_value'):
        targetTrackingConfig['TargetValue'] = target_tracking_config['target_value']

    if target_tracking_config.get('disable_scalein'):
        targetTrackingConfig['DisableScaleIn'] = target_tracking_config['disable_scalein']
    else:
        # Accounting for boto3 response
        targetTrackingConfig['DisableScaleIn'] = False

    if target_tracking_config['predefined_metric_spec'] is not None:
        # Build spec for predefined_metric_spec
        targetTrackingConfig['PredefinedMetricSpecification'] = dict()
        if target_tracking_config['predefined_metric_spec'].get('predefined_metric_type'):
            targetTrackingConfig['PredefinedMetricSpecification']['PredefinedMetricType'] = \
                target_tracking_config['predefined_metric_spec']['predefined_metric_type']

        if target_tracking_config['predefined_metric_spec'].get('resource_label'):
            targetTrackingConfig['PredefinedMetricSpecification']['ResourceLabel'] = \
                target_tracking_config['predefined_metric_spec']['resource_label']

    elif target_tracking_config['customized_metric_spec'] is not None:
        # Build spec for customized_metric_spec
        targetTrackingConfig['CustomizedMetricSpecification'] = dict()
        if target_tracking_config['customized_metric_spec'].get('metric_name'):
            targetTrackingConfig['CustomizedMetricSpecification']['MetricName'] = \
                target_tracking_config['customized_metric_spec']['metric_name']

        if target_tracking_config['customized_metric_spec'].get('namespace'):
            targetTrackingConfig['CustomizedMetricSpecification']['Namespace'] = \
                target_tracking_config['customized_metric_spec']['namespace']

        if target_tracking_config['customized_metric_spec'].get('dimensions'):
            targetTrackingConfig['CustomizedMetricSpecification']['Dimensions'] = \
                target_tracking_config['customized_metric_spec']['dimensions']

        if target_tracking_config['customized_metric_spec'].get('statistic'):
            targetTrackingConfig['CustomizedMetricSpecification']['Statistic'] = \
                target_tracking_config['customized_metric_spec']['statistic']

        if target_tracking_config['customized_metric_spec'].get('unit'):
            targetTrackingConfig['CustomizedMetricSpecification']['Unit'] = \
                target_tracking_config['customized_metric_spec']['unit']

    return targetTrackingConfig


def create_scaling_policy(connection, module):
    changed = False
    asg_name = module.params['asg_name']
    policy_type = module.params['policy_type']
    policy_name = module.params['name']

    if policy_type == 'TargetTrackingScaling':
        params = dict(PolicyName=policy_name,
                      PolicyType=policy_type,
                      AutoScalingGroupName=asg_name)
    else:
        params = dict(PolicyName=policy_name,
                      PolicyType=policy_type,
                      AutoScalingGroupName=asg_name,
                      AdjustmentType=module.params['adjustment_type'])

    # min_adjustment_step attribute is only relevant if the adjustment_type
    # is set to percentage change in capacity, so it is a special case
    if module.params['adjustment_type'] == 'PercentChangeInCapacity':
        if module.params['min_adjustment_step']:
            params['MinAdjustmentMagnitude'] = module.params['min_adjustment_step']

    if policy_type == 'SimpleScaling':
        # can't use required_if because it doesn't allow multiple criteria -
        # it's only required if policy is SimpleScaling and state is present
        if not module.params['scaling_adjustment']:
            module.fail_json(msg='scaling_adjustment is required when policy_type is SimpleScaling '
                                 'and state is present')
        params['ScalingAdjustment'] = module.params['scaling_adjustment']
        if module.params['cooldown']:
            params['Cooldown'] = module.params['cooldown']

    elif policy_type == 'StepScaling':
        if not module.params['step_adjustments']:
            module.fail_json(msg='step_adjustments is required when policy_type is StepScaling'
                                 'and state is present')
        params['StepAdjustments'] = []
        for step_adjustment in module.params['step_adjustments']:
            step_adjust_params = dict(
                ScalingAdjustment=step_adjustment['scaling_adjustment'])
            if step_adjustment.get('lower_bound'):
                step_adjust_params['MetricIntervalLowerBound'] = step_adjustment['lower_bound']
            if step_adjustment.get('upper_bound'):
                step_adjust_params['MetricIntervalUpperBound'] = step_adjustment['upper_bound']
            params['StepAdjustments'].append(step_adjust_params)
        if module.params['metric_aggregation']:
            params['MetricAggregationType'] = module.params['metric_aggregation']
        if module.params['estimated_instance_warmup']:
            params['EstimatedInstanceWarmup'] = module.params['estimated_instance_warmup']

    elif policy_type == 'TargetTrackingScaling':
        if not module.params['target_tracking_config']:
            module.fail_json(msg='target_tracking_config is required when policy_type is '
                                 'TargetTrackingScaling and state is present')
        else:
            params['TargetTrackingConfiguration'] = build_target_specification(module.params.get('target_tracking_config'))
        if module.params['estimated_instance_warmup']:
            params['EstimatedInstanceWarmup'] = module.params['estimated_instance_warmup']

    # Ensure idempotency with policies
    try:
        policies = connection.describe_policies(aws_retry=True,
                                                AutoScalingGroupName=asg_name,
                                                PolicyNames=[policy_name])['ScalingPolicies']
    except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
        module.fail_json_aws(
            e, msg="Failed to obtain autoscaling policy %s" % policy_name)

    before = after = {}
    if not policies:
        changed = True
    else:
        policy = policies[0]
        for key in params:
            if params[key] != policy.get(key):
                changed = True
                before[key] = params[key]
                after[key] = policy.get(key)

    if changed:
        try:
            connection.put_scaling_policy(aws_retry=True, **params)
        except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
            module.fail_json_aws(e, msg="Failed to create autoscaling policy")

        try:
            policies = connection.describe_policies(aws_retry=True,
                                                    AutoScalingGroupName=asg_name,
                                                    PolicyNames=[policy_name])['ScalingPolicies']
        except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
            module.fail_json_aws(
                e, msg="Failed to obtain autoscaling policy %s" % policy_name)

    policy = camel_dict_to_snake_dict(policies[0])
    # Backward compatible return values
    policy['arn'] = policy['policy_arn']
    policy['as_name'] = policy['auto_scaling_group_name']
    policy['name'] = policy['policy_name']

    if before and after:
        module.exit_json(changed=changed, diff=dict(
            before=before, after=after), **policy)
    else:
        module.exit_json(changed=changed, **policy)


def delete_scaling_policy(connection, module):
    policy_name = module.params.get('name')

    try:
        policy = connection.describe_policies(
            aws_retry=True, PolicyNames=[policy_name])
    except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
        module.fail_json_aws(
            e, msg="Failed to obtain autoscaling policy %s" % policy_name)

    if policy['ScalingPolicies']:
        try:
            connection.delete_policy(aws_retry=True,
                                     AutoScalingGroupName=policy['ScalingPolicies'][0]['AutoScalingGroupName'],
                                     PolicyName=policy_name)
            module.exit_json(changed=True)
        except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
            module.fail_json_aws(e, msg="Failed to delete autoscaling policy")

    module.exit_json(changed=False)


def main():
    step_adjustment_spec = dict(
        lower_bound=dict(type='int'),
        upper_bound=dict(type='int'),
        scaling_adjustment=dict(type='int', required=True)
    )

    predefined_metric_spec = dict(
        predefined_metric_type=dict(type='str', choices=['ASGAverageCPUUtilization',
                                                         'ASGAverageNetworkIn',
                                                         'ASGAverageNetworkOut',
                                                         'ALBRequestCountPerTarget'], required=True),
        resource_label=dict(type='str')
    )
    customized_metric_spec = dict(
        metric_name=dict(type='str', required=True),
        namespace=dict(type='str', required=True),
        statistic=dict(type='str', required=True, choices=['Average', 'Minimum', 'Maximum', 'SampleCount', 'Sum']),
        dimensions=dict(type='list', elements='dict'),
        unit=dict(type='str')
    )

    target_tracking_spec = dict(
        disable_scalein=dict(type='bool'),
        target_value=dict(type='float', required=True),
        predefined_metric_spec=dict(type='dict',
                                    options=predefined_metric_spec),
        customized_metric_spec=dict(type='dict',
                                    options=customized_metric_spec)
    )

    argument_spec = dict(
        name=dict(required=True),
        adjustment_type=dict(choices=['ChangeInCapacity', 'ExactCapacity', 'PercentChangeInCapacity']),
        asg_name=dict(),
        scaling_adjustment=dict(type='int'),
        min_adjustment_step=dict(type='int'),
        cooldown=dict(type='int'),
        state=dict(default='present', choices=['present', 'absent']),
        metric_aggregation=dict(default='Average', choices=[
                                'Minimum', 'Maximum', 'Average']),
        policy_type=dict(default='SimpleScaling', choices=[
                         'SimpleScaling', 'StepScaling', 'TargetTrackingScaling']),
        target_tracking_config=dict(type='dict', options=target_tracking_spec),
        step_adjustments=dict(
            type='list', options=step_adjustment_spec, elements='dict'),
        estimated_instance_warmup=dict(type='int')
    )

    module = AnsibleAWSModule(argument_spec=argument_spec,
                              required_if=[['state', 'present', ['asg_name']]])

    connection = module.client(
        'autoscaling', retry_decorator=AWSRetry.jittered_backoff())
    state = module.params.get('state')

    if state == 'present':
        create_scaling_policy(connection, module)
    elif state == 'absent':
        delete_scaling_policy(connection, module)


if __name__ == '__main__':
    main()

Anon7 - 2022
AnonSec Team