Server IP : 85.214.239.14 / Your IP : 18.223.203.196 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /lib/python3/dist-packages/ansible_collections/community/aws/plugins/modules/ |
Upload File : |
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' module: autoscaling_policy short_description: Create or delete AWS scaling policies for Autoscaling groups version_added: 1.0.0 description: - Can create or delete scaling policies for autoscaling groups. - Referenced autoscaling groups must already exist. - Prior to release 5.0.0 this module was called C(community.aws.ec2_scaling_policy). The usage did not change. author: - Zacharie Eakin (@zeekin) - Will Thames (@willthames) options: state: type: str description: - Register or deregister the policy. choices: ['present', 'absent'] default: 'present' name: type: str description: - Unique name for the scaling policy. required: true asg_name: type: str description: - Name of the associated autoscaling group. - Required if I(state) is C(present). adjustment_type: type: str description: - The type of change in capacity of the autoscaling group. - Required if I(state) is C(present). choices: - ChangeInCapacity - ExactCapacity - PercentChangeInCapacity scaling_adjustment: type: int description: - The amount by which the autoscaling group is adjusted by the policy. - A negative number has the effect of scaling down the ASG. - Units are numbers of instances for C(ExactCapacity) or C(ChangeInCapacity) or percent of existing instances for C(PercentChangeInCapacity). - Required when I(policy_type) is C(SimpleScaling). min_adjustment_step: type: int description: - Minimum amount of adjustment when policy is triggered. - Only used when I(adjustment_type) is C(PercentChangeInCapacity). cooldown: type: int description: - The minimum period of time (in seconds) between which autoscaling actions can take place. - Only used when I(policy_type) is C(SimpleScaling). policy_type: type: str description: - Auto scaling adjustment policy. choices: - StepScaling - SimpleScaling - TargetTrackingScaling default: SimpleScaling metric_aggregation: type: str description: - The aggregation type for the CloudWatch metrics. - Only used when I(policy_type) is not C(SimpleScaling). choices: - Minimum - Maximum - Average default: Average step_adjustments: type: list description: - List of dicts containing I(lower_bound), I(upper_bound) and I(scaling_adjustment). - Intervals must not overlap or have a gap between them. - At most, one item can have an undefined I(lower_bound). If any item has a negative lower_bound, then there must be a step adjustment with an undefined I(lower_bound). - At most, one item can have an undefined I(upper_bound). If any item has a positive upper_bound, then there must be a step adjustment with an undefined I(upper_bound). - The bounds are the amount over the alarm threshold at which the adjustment will trigger. This means that for an alarm threshold of 50, triggering at 75 requires a lower bound of 25. See U(http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_StepAdjustment.html). elements: dict suboptions: lower_bound: type: int description: - The lower bound for the difference between the alarm threshold and the CloudWatch metric. upper_bound: type: int description: - The upper bound for the difference between the alarm threshold and the CloudWatch metric. scaling_adjustment: type: int description: - The amount by which to scale. required: true target_tracking_config: type: dict description: - Allows you to specify a I(target_tracking_config) for autoscaling policies in AWS. - I(target_tracking_config) can accept nested dicts for I(customized_metric_spec) or I(predefined_metric_spec). Each specification aligns with their boto3 equivalent. - Required when I(TargetTrackingScaling) policy is specified. version_added: 4.1.0 suboptions: customized_metric_spec: type: dict description: - Specify a dict will be passed in as a call for C(TargetTrackingConfiguration). suboptions: metric_name: type: str description: - The name of the metric. required: true namespace: type: str description: - The namespace of the metric. required: true statistic: type: str description: - The statistic of the metric. required: true choices: - Average - Minimum - Maximum - SampleCount - Sum dimensions: type: list description: - The dimensions of the metric. The element of the list should be a dict. elements: dict unit: type: str description: - The unit of the metric. Reference AmazonCloudWatch API for valid Units. predefined_metric_spec: type: dict description: - Specify a dict will be passed in as a call for I(TargetTrackingConfiguration). suboptions: predefined_metric_type: type: str required: true description: - Required if C(predefined_metric_spec) is used. choices: - ASGAverageCPUUtilization - ASGAverageNetworkIn - ASGAverageNetworkOut - ALBRequestCountPerTarget resource_label: type: str description: - Uniquely identifies a specific ALB target group from which to determine the average request count served by your Auto Scaling group. - You can't specify a resource label unless the target group is attached to the Auto Scaling group. target_value: type: float description: - Specify a float number for target utilization. - Required when I(target_tracking_config) is specified. required: true disable_scalein: type: bool description: - Indicate whether scaling in by the target tracking scaling policy is disabled. estimated_instance_warmup: type: int description: - The estimated time, in seconds, until a newly launched instance can contribute to the CloudWatch metrics. extends_documentation_fragment: - amazon.aws.aws - amazon.aws.ec2 - amazon.aws.boto3 ''' EXAMPLES = ''' - name: Simple Scale Down policy community.aws.autoscaling_policy: state: present region: US-XXX name: "scaledown-policy" adjustment_type: "ChangeInCapacity" asg_name: "application-asg" scaling_adjustment: -1 min_adjustment_step: 1 cooldown: 300 # For an alarm with a breach threshold of 20, the # following creates a stepped policy: # From 20-40 (0-20 above threshold), increase by 50% of existing capacity # From 41-infinity, increase by 100% of existing capacity - community.aws.autoscaling_policy: state: present region: US-XXX name: "step-scale-up-policy" policy_type: StepScaling metric_aggregation: Maximum step_adjustments: - upper_bound: 20 scaling_adjustment: 50 - lower_bound: 20 scaling_adjustment: 100 adjustment_type: "PercentChangeInCapacity" asg_name: "application-asg" - name: create TargetTracking predefined policy ec2_scaling_policy: name: "predefined-policy-1" policy_type: TargetTrackingScaling target_tracking_config: predefined_metric_spec: predefined_metric_type: ASGAverageCPUUtilization target_value: 98.0 asg_name: "asg-test-1" register: result - name: create TargetTracking predefined policy with resource_label ec2_scaling_policy: name: "predefined-policy-1" policy_type: TargetTrackingScaling target_tracking_config: predefined_metric_spec: predefined_metric_type: ALBRequestCountPerTarget resource_label: app/my-alb/778d41231d141a0f/targetgroup/my-alb-target-group/942f017f100becff target_value: 98.0 asg_name: "asg-test-1" register: result - name: create TargetTrackingScaling custom policy ec2_scaling_policy: name: "custom-policy-1" policy_type: TargetTrackingScaling target_tracking_config: customized_metric_spec: metric_name: metric_1 namespace: namespace_1 statistic: Minimum unit: Gigabits dimensions: [{'Name': 'dimension1', 'Value': 'value1'}] disable_scalein: true target_value: 98.0 asg_name: asg-test-1 register: result ''' RETURN = ''' adjustment_type: description: Scaling policy adjustment type. returned: always type: str sample: PercentChangeInCapacity alarms: description: Cloudwatch alarms related to the policy. returned: always type: complex contains: alarm_name: description: Name of the Cloudwatch alarm. returned: always type: str sample: cpu-very-high alarm_arn: description: ARN of the Cloudwatch alarm. returned: always type: str sample: arn:aws:cloudwatch:us-east-2:1234567890:alarm:cpu-very-high arn: description: ARN of the scaling policy. Provided for backward compatibility, value is the same as I(policy_arn). returned: always type: str sample: arn:aws:autoscaling:us-east-2:123456789012:scalingPolicy:59e37526-bd27-42cf-adca-5cd3d90bc3b9:autoScalingGroupName/app-asg:policyName/app-policy as_name: description: Auto Scaling Group name. Provided for backward compatibility, value is the same as I(auto_scaling_group_name). returned: always type: str sample: app-asg auto_scaling_group_name: description: Name of Auto Scaling Group. returned: always type: str sample: app-asg metric_aggregation_type: description: Method used to aggregate metrics. returned: when I(policy_type) is C(StepScaling) type: str sample: Maximum name: description: Name of the scaling policy. Provided for backward compatibility, value is the same as I(policy_name). returned: always type: str sample: app-policy policy_arn: description: ARN of scaling policy. returned: always type: str sample: arn:aws:autoscaling:us-east-2:123456789012:scalingPolicy:59e37526-bd27-42cf-adca-5cd3d90bc3b9:autoScalingGroupName/app-asg:policyName/app-policy policy_name: description: Name of scaling policy. returned: always type: str sample: app-policy policy_type: description: Type of auto scaling policy. returned: always type: str sample: StepScaling scaling_adjustment: description: Adjustment to make when alarm is triggered. returned: When I(policy_type) is C(SimpleScaling) type: int sample: 1 step_adjustments: description: List of step adjustments. returned: always type: complex contains: metric_interval_lower_bound: description: Lower bound for metric interval. returned: if step has a lower bound type: float sample: 20.0 metric_interval_upper_bound: description: Upper bound for metric interval. returned: if step has an upper bound type: float sample: 40.0 scaling_adjustment: description: Adjustment to make if this step is reached. returned: always type: int sample: 50 ''' try: import botocore except ImportError: pass # caught by imported AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.ec2 import AWSRetry from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule from ansible.module_utils.common.dict_transformations import camel_dict_to_snake_dict def build_target_specification(target_tracking_config): # Initialize an empty dict() for building TargetTrackingConfiguration policies, # which will be returned targetTrackingConfig = dict() if target_tracking_config.get('target_value'): targetTrackingConfig['TargetValue'] = target_tracking_config['target_value'] if target_tracking_config.get('disable_scalein'): targetTrackingConfig['DisableScaleIn'] = target_tracking_config['disable_scalein'] else: # Accounting for boto3 response targetTrackingConfig['DisableScaleIn'] = False if target_tracking_config['predefined_metric_spec'] is not None: # Build spec for predefined_metric_spec targetTrackingConfig['PredefinedMetricSpecification'] = dict() if target_tracking_config['predefined_metric_spec'].get('predefined_metric_type'): targetTrackingConfig['PredefinedMetricSpecification']['PredefinedMetricType'] = \ target_tracking_config['predefined_metric_spec']['predefined_metric_type'] if target_tracking_config['predefined_metric_spec'].get('resource_label'): targetTrackingConfig['PredefinedMetricSpecification']['ResourceLabel'] = \ target_tracking_config['predefined_metric_spec']['resource_label'] elif target_tracking_config['customized_metric_spec'] is not None: # Build spec for customized_metric_spec targetTrackingConfig['CustomizedMetricSpecification'] = dict() if target_tracking_config['customized_metric_spec'].get('metric_name'): targetTrackingConfig['CustomizedMetricSpecification']['MetricName'] = \ target_tracking_config['customized_metric_spec']['metric_name'] if target_tracking_config['customized_metric_spec'].get('namespace'): targetTrackingConfig['CustomizedMetricSpecification']['Namespace'] = \ target_tracking_config['customized_metric_spec']['namespace'] if target_tracking_config['customized_metric_spec'].get('dimensions'): targetTrackingConfig['CustomizedMetricSpecification']['Dimensions'] = \ target_tracking_config['customized_metric_spec']['dimensions'] if target_tracking_config['customized_metric_spec'].get('statistic'): targetTrackingConfig['CustomizedMetricSpecification']['Statistic'] = \ target_tracking_config['customized_metric_spec']['statistic'] if target_tracking_config['customized_metric_spec'].get('unit'): targetTrackingConfig['CustomizedMetricSpecification']['Unit'] = \ target_tracking_config['customized_metric_spec']['unit'] return targetTrackingConfig def create_scaling_policy(connection, module): changed = False asg_name = module.params['asg_name'] policy_type = module.params['policy_type'] policy_name = module.params['name'] if policy_type == 'TargetTrackingScaling': params = dict(PolicyName=policy_name, PolicyType=policy_type, AutoScalingGroupName=asg_name) else: params = dict(PolicyName=policy_name, PolicyType=policy_type, AutoScalingGroupName=asg_name, AdjustmentType=module.params['adjustment_type']) # min_adjustment_step attribute is only relevant if the adjustment_type # is set to percentage change in capacity, so it is a special case if module.params['adjustment_type'] == 'PercentChangeInCapacity': if module.params['min_adjustment_step']: params['MinAdjustmentMagnitude'] = module.params['min_adjustment_step'] if policy_type == 'SimpleScaling': # can't use required_if because it doesn't allow multiple criteria - # it's only required if policy is SimpleScaling and state is present if not module.params['scaling_adjustment']: module.fail_json(msg='scaling_adjustment is required when policy_type is SimpleScaling ' 'and state is present') params['ScalingAdjustment'] = module.params['scaling_adjustment'] if module.params['cooldown']: params['Cooldown'] = module.params['cooldown'] elif policy_type == 'StepScaling': if not module.params['step_adjustments']: module.fail_json(msg='step_adjustments is required when policy_type is StepScaling' 'and state is present') params['StepAdjustments'] = [] for step_adjustment in module.params['step_adjustments']: step_adjust_params = dict( ScalingAdjustment=step_adjustment['scaling_adjustment']) if step_adjustment.get('lower_bound'): step_adjust_params['MetricIntervalLowerBound'] = step_adjustment['lower_bound'] if step_adjustment.get('upper_bound'): step_adjust_params['MetricIntervalUpperBound'] = step_adjustment['upper_bound'] params['StepAdjustments'].append(step_adjust_params) if module.params['metric_aggregation']: params['MetricAggregationType'] = module.params['metric_aggregation'] if module.params['estimated_instance_warmup']: params['EstimatedInstanceWarmup'] = module.params['estimated_instance_warmup'] elif policy_type == 'TargetTrackingScaling': if not module.params['target_tracking_config']: module.fail_json(msg='target_tracking_config is required when policy_type is ' 'TargetTrackingScaling and state is present') else: params['TargetTrackingConfiguration'] = build_target_specification(module.params.get('target_tracking_config')) if module.params['estimated_instance_warmup']: params['EstimatedInstanceWarmup'] = module.params['estimated_instance_warmup'] # Ensure idempotency with policies try: policies = connection.describe_policies(aws_retry=True, AutoScalingGroupName=asg_name, PolicyNames=[policy_name])['ScalingPolicies'] except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws( e, msg="Failed to obtain autoscaling policy %s" % policy_name) before = after = {} if not policies: changed = True else: policy = policies[0] for key in params: if params[key] != policy.get(key): changed = True before[key] = params[key] after[key] = policy.get(key) if changed: try: connection.put_scaling_policy(aws_retry=True, **params) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to create autoscaling policy") try: policies = connection.describe_policies(aws_retry=True, AutoScalingGroupName=asg_name, PolicyNames=[policy_name])['ScalingPolicies'] except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws( e, msg="Failed to obtain autoscaling policy %s" % policy_name) policy = camel_dict_to_snake_dict(policies[0]) # Backward compatible return values policy['arn'] = policy['policy_arn'] policy['as_name'] = policy['auto_scaling_group_name'] policy['name'] = policy['policy_name'] if before and after: module.exit_json(changed=changed, diff=dict( before=before, after=after), **policy) else: module.exit_json(changed=changed, **policy) def delete_scaling_policy(connection, module): policy_name = module.params.get('name') try: policy = connection.describe_policies( aws_retry=True, PolicyNames=[policy_name]) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws( e, msg="Failed to obtain autoscaling policy %s" % policy_name) if policy['ScalingPolicies']: try: connection.delete_policy(aws_retry=True, AutoScalingGroupName=policy['ScalingPolicies'][0]['AutoScalingGroupName'], PolicyName=policy_name) module.exit_json(changed=True) except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e: module.fail_json_aws(e, msg="Failed to delete autoscaling policy") module.exit_json(changed=False) def main(): step_adjustment_spec = dict( lower_bound=dict(type='int'), upper_bound=dict(type='int'), scaling_adjustment=dict(type='int', required=True) ) predefined_metric_spec = dict( predefined_metric_type=dict(type='str', choices=['ASGAverageCPUUtilization', 'ASGAverageNetworkIn', 'ASGAverageNetworkOut', 'ALBRequestCountPerTarget'], required=True), resource_label=dict(type='str') ) customized_metric_spec = dict( metric_name=dict(type='str', required=True), namespace=dict(type='str', required=True), statistic=dict(type='str', required=True, choices=['Average', 'Minimum', 'Maximum', 'SampleCount', 'Sum']), dimensions=dict(type='list', elements='dict'), unit=dict(type='str') ) target_tracking_spec = dict( disable_scalein=dict(type='bool'), target_value=dict(type='float', required=True), predefined_metric_spec=dict(type='dict', options=predefined_metric_spec), customized_metric_spec=dict(type='dict', options=customized_metric_spec) ) argument_spec = dict( name=dict(required=True), adjustment_type=dict(choices=['ChangeInCapacity', 'ExactCapacity', 'PercentChangeInCapacity']), asg_name=dict(), scaling_adjustment=dict(type='int'), min_adjustment_step=dict(type='int'), cooldown=dict(type='int'), state=dict(default='present', choices=['present', 'absent']), metric_aggregation=dict(default='Average', choices=[ 'Minimum', 'Maximum', 'Average']), policy_type=dict(default='SimpleScaling', choices=[ 'SimpleScaling', 'StepScaling', 'TargetTrackingScaling']), target_tracking_config=dict(type='dict', options=target_tracking_spec), step_adjustments=dict( type='list', options=step_adjustment_spec, elements='dict'), estimated_instance_warmup=dict(type='int') ) module = AnsibleAWSModule(argument_spec=argument_spec, required_if=[['state', 'present', ['asg_name']]]) connection = module.client( 'autoscaling', retry_decorator=AWSRetry.jittered_backoff()) state = module.params.get('state') if state == 'present': create_scaling_policy(connection, module) elif state == 'absent': delete_scaling_policy(connection, module) if __name__ == '__main__': main()