Server IP : 85.214.239.14 / Your IP : 18.118.163.255 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /usr/share/doc/nodejs/api/ |
Upload File : |
# Crypto <!--introduced_in=v0.3.6--> > Stability: 2 - Stable <!-- source_link=lib/crypto.js --> The `node:crypto` module provides cryptographic functionality that includes a set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions. ```mjs const { createHmac } = await import('node:crypto'); const secret = 'abcdefg'; const hash = createHmac('sha256', secret) .update('I love cupcakes') .digest('hex'); console.log(hash); // Prints: // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e ``` ```cjs const { createHmac } = require('node:crypto'); const secret = 'abcdefg'; const hash = createHmac('sha256', secret) .update('I love cupcakes') .digest('hex'); console.log(hash); // Prints: // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e ``` ## Determining if crypto support is unavailable It is possible for Node.js to be built without including support for the `node:crypto` module. In such cases, attempting to `import` from `crypto` or calling `require('node:crypto')` will result in an error being thrown. When using CommonJS, the error thrown can be caught using try/catch: <!-- eslint-disable no-global-assign --> ```cjs let crypto; try { crypto = require('node:crypto'); } catch (err) { console.error('crypto support is disabled!'); } ``` <!-- eslint-enable no-global-assign --> When using the lexical ESM `import` keyword, the error can only be caught if a handler for `process.on('uncaughtException')` is registered _before_ any attempt to load the module is made (using, for instance, a preload module). When using ESM, if there is a chance that the code may be run on a build of Node.js where crypto support is not enabled, consider using the [`import()`][] function instead of the lexical `import` keyword: ```mjs let crypto; try { crypto = await import('node:crypto'); } catch (err) { console.error('crypto support is disabled!'); } ``` ## Class: `Certificate` <!-- YAML added: v0.11.8 --> SPKAC is a Certificate Signing Request mechanism originally implemented by Netscape and was specified formally as part of HTML5's `keygen` element. `<keygen>` is deprecated since [HTML 5.2][] and new projects should not use this element anymore. The `node:crypto` module provides the `Certificate` class for working with SPKAC data. The most common usage is handling output generated by the HTML5 `<keygen>` element. Node.js uses [OpenSSL's SPKAC implementation][] internally. ### Static method: `Certificate.exportChallenge(spkac[, encoding])` <!-- YAML added: v9.0.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The spkac argument can be an ArrayBuffer. Limited the size of the spkac argument to a maximum of 2**31 - 1 bytes. --> * `spkac` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `spkac` string. * Returns: {Buffer} The challenge component of the `spkac` data structure, which includes a public key and a challenge. ```mjs const { Certificate } = await import('node:crypto'); const spkac = getSpkacSomehow(); const challenge = Certificate.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string ``` ```cjs const { Certificate } = require('node:crypto'); const spkac = getSpkacSomehow(); const challenge = Certificate.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string ``` ### Static method: `Certificate.exportPublicKey(spkac[, encoding])` <!-- YAML added: v9.0.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The spkac argument can be an ArrayBuffer. Limited the size of the spkac argument to a maximum of 2**31 - 1 bytes. --> * `spkac` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `spkac` string. * Returns: {Buffer} The public key component of the `spkac` data structure, which includes a public key and a challenge. ```mjs const { Certificate } = await import('node:crypto'); const spkac = getSpkacSomehow(); const publicKey = Certificate.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...> ``` ```cjs const { Certificate } = require('node:crypto'); const spkac = getSpkacSomehow(); const publicKey = Certificate.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...> ``` ### Static method: `Certificate.verifySpkac(spkac[, encoding])` <!-- YAML added: v9.0.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The spkac argument can be an ArrayBuffer. Added encoding. Limited the size of the spkac argument to a maximum of 2**31 - 1 bytes. --> * `spkac` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `spkac` string. * Returns: {boolean} `true` if the given `spkac` data structure is valid, `false` otherwise. ```mjs import { Buffer } from 'node:buffer'; const { Certificate } = await import('node:crypto'); const spkac = getSpkacSomehow(); console.log(Certificate.verifySpkac(Buffer.from(spkac))); // Prints: true or false ``` ```cjs const { Buffer } = require('node:buffer'); const { Certificate } = require('node:crypto'); const spkac = getSpkacSomehow(); console.log(Certificate.verifySpkac(Buffer.from(spkac))); // Prints: true or false ``` ### Legacy API > Stability: 0 - Deprecated As a legacy interface, it is possible to create new instances of the `crypto.Certificate` class as illustrated in the examples below. #### `new crypto.Certificate()` Instances of the `Certificate` class can be created using the `new` keyword or by calling `crypto.Certificate()` as a function: ```mjs const { Certificate } = await import('node:crypto'); const cert1 = new Certificate(); const cert2 = Certificate(); ``` ```cjs const { Certificate } = require('node:crypto'); const cert1 = new Certificate(); const cert2 = Certificate(); ``` #### `certificate.exportChallenge(spkac[, encoding])` <!-- YAML added: v0.11.8 --> * `spkac` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `spkac` string. * Returns: {Buffer} The challenge component of the `spkac` data structure, which includes a public key and a challenge. ```mjs const { Certificate } = await import('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const challenge = cert.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string ``` ```cjs const { Certificate } = require('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const challenge = cert.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string ``` #### `certificate.exportPublicKey(spkac[, encoding])` <!-- YAML added: v0.11.8 --> * `spkac` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `spkac` string. * Returns: {Buffer} The public key component of the `spkac` data structure, which includes a public key and a challenge. ```mjs const { Certificate } = await import('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const publicKey = cert.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...> ``` ```cjs const { Certificate } = require('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const publicKey = cert.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...> ``` #### `certificate.verifySpkac(spkac[, encoding])` <!-- YAML added: v0.11.8 --> * `spkac` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `spkac` string. * Returns: {boolean} `true` if the given `spkac` data structure is valid, `false` otherwise. ```mjs import { Buffer } from 'node:buffer'; const { Certificate } = await import('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); console.log(cert.verifySpkac(Buffer.from(spkac))); // Prints: true or false ``` ```cjs const { Buffer } = require('node:buffer'); const { Certificate } = require('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); console.log(cert.verifySpkac(Buffer.from(spkac))); // Prints: true or false ``` ## Class: `Cipher` <!-- YAML added: v0.1.94 --> * Extends: {stream.Transform} Instances of the `Cipher` class are used to encrypt data. The class can be used in one of two ways: * As a [stream][] that is both readable and writable, where plain unencrypted data is written to produce encrypted data on the readable side, or * Using the [`cipher.update()`][] and [`cipher.final()`][] methods to produce the encrypted data. The [`crypto.createCipher()`][] or [`crypto.createCipheriv()`][] methods are used to create `Cipher` instances. `Cipher` objects are not to be created directly using the `new` keyword. Example: Using `Cipher` objects as streams: ```mjs const { scrypt, randomFill, createCipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; // Once we have the key and iv, we can create and use the cipher... const cipher = createCipheriv(algorithm, key, iv); let encrypted = ''; cipher.setEncoding('hex'); cipher.on('data', (chunk) => encrypted += chunk); cipher.on('end', () => console.log(encrypted)); cipher.write('some clear text data'); cipher.end(); }); }); ``` ```cjs const { scrypt, randomFill, createCipheriv, } = require('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; // Once we have the key and iv, we can create and use the cipher... const cipher = createCipheriv(algorithm, key, iv); let encrypted = ''; cipher.setEncoding('hex'); cipher.on('data', (chunk) => encrypted += chunk); cipher.on('end', () => console.log(encrypted)); cipher.write('some clear text data'); cipher.end(); }); }); ``` Example: Using `Cipher` and piped streams: ```mjs import { createReadStream, createWriteStream, } from 'node:fs'; import { pipeline, } from 'node:stream'; const { scrypt, randomFill, createCipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); const input = createReadStream('test.js'); const output = createWriteStream('test.enc'); pipeline(input, cipher, output, (err) => { if (err) throw err; }); }); }); ``` ```cjs const { createReadStream, createWriteStream, } = require('node:fs'); const { pipeline, } = require('node:stream'); const { scrypt, randomFill, createCipheriv, } = require('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); const input = createReadStream('test.js'); const output = createWriteStream('test.enc'); pipeline(input, cipher, output, (err) => { if (err) throw err; }); }); }); ``` Example: Using the [`cipher.update()`][] and [`cipher.final()`][] methods: ```mjs const { scrypt, randomFill, createCipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); let encrypted = cipher.update('some clear text data', 'utf8', 'hex'); encrypted += cipher.final('hex'); console.log(encrypted); }); }); ``` ```cjs const { scrypt, randomFill, createCipheriv, } = require('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); let encrypted = cipher.update('some clear text data', 'utf8', 'hex'); encrypted += cipher.final('hex'); console.log(encrypted); }); }); ``` ### `cipher.final([outputEncoding])` <!-- YAML added: v0.1.94 --> * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned. Once the `cipher.final()` method has been called, the `Cipher` object can no longer be used to encrypt data. Attempts to call `cipher.final()` more than once will result in an error being thrown. ### `cipher.getAuthTag()` <!-- YAML added: v1.0.0 --> * Returns: {Buffer} When using an authenticated encryption mode (`GCM`, `CCM`, `OCB`, and `chacha20-poly1305` are currently supported), the `cipher.getAuthTag()` method returns a [`Buffer`][] containing the _authentication tag_ that has been computed from the given data. The `cipher.getAuthTag()` method should only be called after encryption has been completed using the [`cipher.final()`][] method. If the `authTagLength` option was set during the `cipher` instance's creation, this function will return exactly `authTagLength` bytes. ### `cipher.setAAD(buffer[, options])` <!-- YAML added: v1.0.0 --> * `buffer` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `options` {Object} [`stream.transform` options][] * `plaintextLength` {number} * `encoding` {string} The string encoding to use when `buffer` is a string. * Returns: {Cipher} The same `Cipher` instance for method chaining. When using an authenticated encryption mode (`GCM`, `CCM`, `OCB`, and `chacha20-poly1305` are currently supported), the `cipher.setAAD()` method sets the value used for the _additional authenticated data_ (AAD) input parameter. The `plaintextLength` option is optional for `GCM` and `OCB`. When using `CCM`, the `plaintextLength` option must be specified and its value must match the length of the plaintext in bytes. See [CCM mode][]. The `cipher.setAAD()` method must be called before [`cipher.update()`][]. ### `cipher.setAutoPadding([autoPadding])` <!-- YAML added: v0.7.1 --> * `autoPadding` {boolean} **Default:** `true` * Returns: {Cipher} The same `Cipher` instance for method chaining. When using block encryption algorithms, the `Cipher` class will automatically add padding to the input data to the appropriate block size. To disable the default padding call `cipher.setAutoPadding(false)`. When `autoPadding` is `false`, the length of the entire input data must be a multiple of the cipher's block size or [`cipher.final()`][] will throw an error. Disabling automatic padding is useful for non-standard padding, for instance using `0x0` instead of PKCS padding. The `cipher.setAutoPadding()` method must be called before [`cipher.final()`][]. ### `cipher.update(data[, inputEncoding][, outputEncoding])` <!-- YAML added: v0.1.94 changes: - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `data` {string|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the data. * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Updates the cipher with `data`. If the `inputEncoding` argument is given, the `data` argument is a string using the specified encoding. If the `inputEncoding` argument is not given, `data` must be a [`Buffer`][], `TypedArray`, or `DataView`. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. The `outputEncoding` specifies the output format of the enciphered data. If the `outputEncoding` is specified, a string using the specified encoding is returned. If no `outputEncoding` is provided, a [`Buffer`][] is returned. The `cipher.update()` method can be called multiple times with new data until [`cipher.final()`][] is called. Calling `cipher.update()` after [`cipher.final()`][] will result in an error being thrown. ## Class: `Decipher` <!-- YAML added: v0.1.94 --> * Extends: {stream.Transform} Instances of the `Decipher` class are used to decrypt data. The class can be used in one of two ways: * As a [stream][] that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or * Using the [`decipher.update()`][] and [`decipher.final()`][] methods to produce the unencrypted data. The [`crypto.createDecipher()`][] or [`crypto.createDecipheriv()`][] methods are used to create `Decipher` instances. `Decipher` objects are not to be created directly using the `new` keyword. Example: Using `Decipher` objects as streams: ```mjs import { Buffer } from 'node:buffer'; const { scryptSync, createDecipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Key length is dependent on the algorithm. In this case for aes192, it is // 24 bytes (192 bits). // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); let decrypted = ''; decipher.on('readable', () => { let chunk; while (null !== (chunk = decipher.read())) { decrypted += chunk.toString('utf8'); } }); decipher.on('end', () => { console.log(decrypted); // Prints: some clear text data }); // Encrypted with same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; decipher.write(encrypted, 'hex'); decipher.end(); ``` ```cjs const { scryptSync, createDecipheriv, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Key length is dependent on the algorithm. In this case for aes192, it is // 24 bytes (192 bits). // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); let decrypted = ''; decipher.on('readable', () => { let chunk; while (null !== (chunk = decipher.read())) { decrypted += chunk.toString('utf8'); } }); decipher.on('end', () => { console.log(decrypted); // Prints: some clear text data }); // Encrypted with same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; decipher.write(encrypted, 'hex'); decipher.end(); ``` Example: Using `Decipher` and piped streams: ```mjs import { createReadStream, createWriteStream, } from 'node:fs'; import { Buffer } from 'node:buffer'; const { scryptSync, createDecipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); const input = createReadStream('test.enc'); const output = createWriteStream('test.js'); input.pipe(decipher).pipe(output); ``` ```cjs const { createReadStream, createWriteStream, } = require('node:fs'); const { scryptSync, createDecipheriv, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); const input = createReadStream('test.enc'); const output = createWriteStream('test.js'); input.pipe(decipher).pipe(output); ``` Example: Using the [`decipher.update()`][] and [`decipher.final()`][] methods: ```mjs import { Buffer } from 'node:buffer'; const { scryptSync, createDecipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); // Encrypted using same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; let decrypted = decipher.update(encrypted, 'hex', 'utf8'); decrypted += decipher.final('utf8'); console.log(decrypted); // Prints: some clear text data ``` ```cjs const { scryptSync, createDecipheriv, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); // Encrypted using same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; let decrypted = decipher.update(encrypted, 'hex', 'utf8'); decrypted += decipher.final('utf8'); console.log(decrypted); // Prints: some clear text data ``` ### `decipher.final([outputEncoding])` <!-- YAML added: v0.1.94 --> * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned. Once the `decipher.final()` method has been called, the `Decipher` object can no longer be used to decrypt data. Attempts to call `decipher.final()` more than once will result in an error being thrown. ### `decipher.setAAD(buffer[, options])` <!-- YAML added: v1.0.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The buffer argument can be a string or ArrayBuffer and is limited to no more than 2 ** 31 - 1 bytes. - version: v7.2.0 pr-url: https://github.com/nodejs/node/pull/9398 description: This method now returns a reference to `decipher`. --> * `buffer` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `options` {Object} [`stream.transform` options][] * `plaintextLength` {number} * `encoding` {string} String encoding to use when `buffer` is a string. * Returns: {Decipher} The same Decipher for method chaining. When using an authenticated encryption mode (`GCM`, `CCM`, `OCB`, and `chacha20-poly1305` are currently supported), the `decipher.setAAD()` method sets the value used for the _additional authenticated data_ (AAD) input parameter. The `options` argument is optional for `GCM`. When using `CCM`, the `plaintextLength` option must be specified and its value must match the length of the ciphertext in bytes. See [CCM mode][]. The `decipher.setAAD()` method must be called before [`decipher.update()`][]. When passing a string as the `buffer`, please consider [caveats when using strings as inputs to cryptographic APIs][]. ### `decipher.setAuthTag(buffer[, encoding])` <!-- YAML added: v1.0.0 changes: - version: v20.13.0 pr-url: https://github.com/nodejs/node/pull/52345 description: Using GCM tag lengths other than 128 bits without specifying the `authTagLength` option when creating `decipher` is deprecated. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The buffer argument can be a string or ArrayBuffer and is limited to no more than 2 ** 31 - 1 bytes. - version: v11.0.0 pr-url: https://github.com/nodejs/node/pull/17825 description: This method now throws if the GCM tag length is invalid. - version: v7.2.0 pr-url: https://github.com/nodejs/node/pull/9398 description: This method now returns a reference to `decipher`. --> * `buffer` {string|Buffer|ArrayBuffer|TypedArray|DataView} * `encoding` {string} String encoding to use when `buffer` is a string. * Returns: {Decipher} The same Decipher for method chaining. When using an authenticated encryption mode (`GCM`, `CCM`, `OCB`, and `chacha20-poly1305` are currently supported), the `decipher.setAuthTag()` method is used to pass in the received _authentication tag_. If no tag is provided, or if the cipher text has been tampered with, [`decipher.final()`][] will throw, indicating that the cipher text should be discarded due to failed authentication. If the tag length is invalid according to [NIST SP 800-38D][] or does not match the value of the `authTagLength` option, `decipher.setAuthTag()` will throw an error. The `decipher.setAuthTag()` method must be called before [`decipher.update()`][] for `CCM` mode or before [`decipher.final()`][] for `GCM` and `OCB` modes and `chacha20-poly1305`. `decipher.setAuthTag()` can only be called once. When passing a string as the authentication tag, please consider [caveats when using strings as inputs to cryptographic APIs][]. ### `decipher.setAutoPadding([autoPadding])` <!-- YAML added: v0.7.1 --> * `autoPadding` {boolean} **Default:** `true` * Returns: {Decipher} The same Decipher for method chaining. When data has been encrypted without standard block padding, calling `decipher.setAutoPadding(false)` will disable automatic padding to prevent [`decipher.final()`][] from checking for and removing padding. Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size. The `decipher.setAutoPadding()` method must be called before [`decipher.final()`][]. ### `decipher.update(data[, inputEncoding][, outputEncoding])` <!-- YAML added: v0.1.94 changes: - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `data` {string|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the `data` string. * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Updates the decipher with `data`. If the `inputEncoding` argument is given, the `data` argument is a string using the specified encoding. If the `inputEncoding` argument is not given, `data` must be a [`Buffer`][]. If `data` is a [`Buffer`][] then `inputEncoding` is ignored. The `outputEncoding` specifies the output format of the enciphered data. If the `outputEncoding` is specified, a string using the specified encoding is returned. If no `outputEncoding` is provided, a [`Buffer`][] is returned. The `decipher.update()` method can be called multiple times with new data until [`decipher.final()`][] is called. Calling `decipher.update()` after [`decipher.final()`][] will result in an error being thrown. Even if the underlying cipher implements authentication, the authenticity and integrity of the plaintext returned from this function may be uncertain at this time. For authenticated encryption algorithms, authenticity is generally only established when the application calls [`decipher.final()`][]. ## Class: `DiffieHellman` <!-- YAML added: v0.5.0 --> The `DiffieHellman` class is a utility for creating Diffie-Hellman key exchanges. Instances of the `DiffieHellman` class can be created using the [`crypto.createDiffieHellman()`][] function. ```mjs import assert from 'node:assert'; const { createDiffieHellman, } = await import('node:crypto'); // Generate Alice's keys... const alice = createDiffieHellman(2048); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator()); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); // OK assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); ``` ```cjs const assert = require('node:assert'); const { createDiffieHellman, } = require('node:crypto'); // Generate Alice's keys... const alice = createDiffieHellman(2048); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator()); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); // OK assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); ``` ### `diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])` <!-- YAML added: v0.5.0 --> * `otherPublicKey` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of an `otherPublicKey` string. * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Computes the shared secret using `otherPublicKey` as the other party's public key and returns the computed shared secret. The supplied key is interpreted using the specified `inputEncoding`, and secret is encoded using specified `outputEncoding`. If the `inputEncoding` is not provided, `otherPublicKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. If `outputEncoding` is given a string is returned; otherwise, a [`Buffer`][] is returned. ### `diffieHellman.generateKeys([encoding])` <!-- YAML added: v0.5.0 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Generates private and public Diffie-Hellman key values unless they have been generated or computed already, and returns the public key in the specified `encoding`. This key should be transferred to the other party. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. This function is a thin wrapper around [`DH_generate_key()`][]. In particular, once a private key has been generated or set, calling this function only updates the public key but does not generate a new private key. ### `diffieHellman.getGenerator([encoding])` <!-- YAML added: v0.5.0 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Returns the Diffie-Hellman generator in the specified `encoding`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### `diffieHellman.getPrime([encoding])` <!-- YAML added: v0.5.0 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Returns the Diffie-Hellman prime in the specified `encoding`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### `diffieHellman.getPrivateKey([encoding])` <!-- YAML added: v0.5.0 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Returns the Diffie-Hellman private key in the specified `encoding`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### `diffieHellman.getPublicKey([encoding])` <!-- YAML added: v0.5.0 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Returns the Diffie-Hellman public key in the specified `encoding`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### `diffieHellman.setPrivateKey(privateKey[, encoding])` <!-- YAML added: v0.5.0 --> * `privateKey` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `privateKey` string. Sets the Diffie-Hellman private key. If the `encoding` argument is provided, `privateKey` is expected to be a string. If no `encoding` is provided, `privateKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. This function does not automatically compute the associated public key. Either [`diffieHellman.setPublicKey()`][] or [`diffieHellman.generateKeys()`][] can be used to manually provide the public key or to automatically derive it. ### `diffieHellman.setPublicKey(publicKey[, encoding])` <!-- YAML added: v0.5.0 --> * `publicKey` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `publicKey` string. Sets the Diffie-Hellman public key. If the `encoding` argument is provided, `publicKey` is expected to be a string. If no `encoding` is provided, `publicKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. ### `diffieHellman.verifyError` <!-- YAML added: v0.11.12 --> A bit field containing any warnings and/or errors resulting from a check performed during initialization of the `DiffieHellman` object. The following values are valid for this property (as defined in `node:constants` module): * `DH_CHECK_P_NOT_SAFE_PRIME` * `DH_CHECK_P_NOT_PRIME` * `DH_UNABLE_TO_CHECK_GENERATOR` * `DH_NOT_SUITABLE_GENERATOR` ## Class: `DiffieHellmanGroup` <!-- YAML added: v0.7.5 --> The `DiffieHellmanGroup` class takes a well-known modp group as its argument. It works the same as `DiffieHellman`, except that it does not allow changing its keys after creation. In other words, it does not implement `setPublicKey()` or `setPrivateKey()` methods. ```mjs const { createDiffieHellmanGroup } = await import('node:crypto'); const dh = createDiffieHellmanGroup('modp16'); ``` ```cjs const { createDiffieHellmanGroup } = require('node:crypto'); const dh = createDiffieHellmanGroup('modp16'); ``` The following groups are supported: * `'modp14'` (2048 bits, [RFC 3526][] Section 3) * `'modp15'` (3072 bits, [RFC 3526][] Section 4) * `'modp16'` (4096 bits, [RFC 3526][] Section 5) * `'modp17'` (6144 bits, [RFC 3526][] Section 6) * `'modp18'` (8192 bits, [RFC 3526][] Section 7) The following groups are still supported but deprecated (see [Caveats][]): * `'modp1'` (768 bits, [RFC 2409][] Section 6.1) <span class="deprecated-inline"></span> * `'modp2'` (1024 bits, [RFC 2409][] Section 6.2) <span class="deprecated-inline"></span> * `'modp5'` (1536 bits, [RFC 3526][] Section 2) <span class="deprecated-inline"></span> These deprecated groups might be removed in future versions of Node.js. ## Class: `ECDH` <!-- YAML added: v0.11.14 --> The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) key exchanges. Instances of the `ECDH` class can be created using the [`crypto.createECDH()`][] function. ```mjs import assert from 'node:assert'; const { createECDH, } = await import('node:crypto'); // Generate Alice's keys... const alice = createECDH('secp521r1'); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createECDH('secp521r1'); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); // OK ``` ```cjs const assert = require('node:assert'); const { createECDH, } = require('node:crypto'); // Generate Alice's keys... const alice = createECDH('secp521r1'); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createECDH('secp521r1'); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); // OK ``` ### Static method: `ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])` <!-- YAML added: v10.0.0 --> * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `curve` {string} * `inputEncoding` {string} The [encoding][] of the `key` string. * `outputEncoding` {string} The [encoding][] of the return value. * `format` {string} **Default:** `'uncompressed'` * Returns: {Buffer | string} Converts the EC Diffie-Hellman public key specified by `key` and `curve` to the format specified by `format`. The `format` argument specifies point encoding and can be `'compressed'`, `'uncompressed'` or `'hybrid'`. The supplied key is interpreted using the specified `inputEncoding`, and the returned key is encoded using the specified `outputEncoding`. Use [`crypto.getCurves()`][] to obtain a list of available curve names. On recent OpenSSL releases, `openssl ecparam -list_curves` will also display the name and description of each available elliptic curve. If `format` is not specified the point will be returned in `'uncompressed'` format. If the `inputEncoding` is not provided, `key` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. Example (uncompressing a key): ```mjs const { createECDH, ECDH, } = await import('node:crypto'); const ecdh = createECDH('secp256k1'); ecdh.generateKeys(); const compressedKey = ecdh.getPublicKey('hex', 'compressed'); const uncompressedKey = ECDH.convertKey(compressedKey, 'secp256k1', 'hex', 'hex', 'uncompressed'); // The converted key and the uncompressed public key should be the same console.log(uncompressedKey === ecdh.getPublicKey('hex')); ``` ```cjs const { createECDH, ECDH, } = require('node:crypto'); const ecdh = createECDH('secp256k1'); ecdh.generateKeys(); const compressedKey = ecdh.getPublicKey('hex', 'compressed'); const uncompressedKey = ECDH.convertKey(compressedKey, 'secp256k1', 'hex', 'hex', 'uncompressed'); // The converted key and the uncompressed public key should be the same console.log(uncompressedKey === ecdh.getPublicKey('hex')); ``` ### `ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])` <!-- YAML added: v0.11.14 changes: - version: v10.0.0 pr-url: https://github.com/nodejs/node/pull/16849 description: Changed error format to better support invalid public key error. - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `otherPublicKey` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the `otherPublicKey` string. * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Computes the shared secret using `otherPublicKey` as the other party's public key and returns the computed shared secret. The supplied key is interpreted using specified `inputEncoding`, and the returned secret is encoded using the specified `outputEncoding`. If the `inputEncoding` is not provided, `otherPublicKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. If `outputEncoding` is given a string will be returned; otherwise a [`Buffer`][] is returned. `ecdh.computeSecret` will throw an `ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY` error when `otherPublicKey` lies outside of the elliptic curve. Since `otherPublicKey` is usually supplied from a remote user over an insecure network, be sure to handle this exception accordingly. ### `ecdh.generateKeys([encoding[, format]])` <!-- YAML added: v0.11.14 --> * `encoding` {string} The [encoding][] of the return value. * `format` {string} **Default:** `'uncompressed'` * Returns: {Buffer | string} Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified `format` and `encoding`. This key should be transferred to the other party. The `format` argument specifies point encoding and can be `'compressed'` or `'uncompressed'`. If `format` is not specified, the point will be returned in `'uncompressed'` format. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### `ecdh.getPrivateKey([encoding])` <!-- YAML added: v0.11.14 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} The EC Diffie-Hellman in the specified `encoding`. If `encoding` is specified, a string is returned; otherwise a [`Buffer`][] is returned. ### `ecdh.getPublicKey([encoding][, format])` <!-- YAML added: v0.11.14 --> * `encoding` {string} The [encoding][] of the return value. * `format` {string} **Default:** `'uncompressed'` * Returns: {Buffer | string} The EC Diffie-Hellman public key in the specified `encoding` and `format`. The `format` argument specifies point encoding and can be `'compressed'` or `'uncompressed'`. If `format` is not specified the point will be returned in `'uncompressed'` format. If `encoding` is specified, a string is returned; otherwise a [`Buffer`][] is returned. ### `ecdh.setPrivateKey(privateKey[, encoding])` <!-- YAML added: v0.11.14 --> * `privateKey` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `privateKey` string. Sets the EC Diffie-Hellman private key. If `encoding` is provided, `privateKey` is expected to be a string; otherwise `privateKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. If `privateKey` is not valid for the curve specified when the `ECDH` object was created, an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the `ECDH` object. ### `ecdh.setPublicKey(publicKey[, encoding])` <!-- YAML added: v0.11.14 deprecated: v5.2.0 --> > Stability: 0 - Deprecated * `publicKey` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The [encoding][] of the `publicKey` string. Sets the EC Diffie-Hellman public key. If `encoding` is provided `publicKey` is expected to be a string; otherwise a [`Buffer`][], `TypedArray`, or `DataView` is expected. There is not normally a reason to call this method because `ECDH` only requires a private key and the other party's public key to compute the shared secret. Typically either [`ecdh.generateKeys()`][] or [`ecdh.setPrivateKey()`][] will be called. The [`ecdh.setPrivateKey()`][] method attempts to generate the public point/key associated with the private key being set. Example (obtaining a shared secret): ```mjs const { createECDH, createHash, } = await import('node:crypto'); const alice = createECDH('secp256k1'); const bob = createECDH('secp256k1'); // This is a shortcut way of specifying one of Alice's previous private // keys. It would be unwise to use such a predictable private key in a real // application. alice.setPrivateKey( createHash('sha256').update('alice', 'utf8').digest(), ); // Bob uses a newly generated cryptographically strong // pseudorandom key pair bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); // aliceSecret and bobSecret should be the same shared secret value console.log(aliceSecret === bobSecret); ``` ```cjs const { createECDH, createHash, } = require('node:crypto'); const alice = createECDH('secp256k1'); const bob = createECDH('secp256k1'); // This is a shortcut way of specifying one of Alice's previous private // keys. It would be unwise to use such a predictable private key in a real // application. alice.setPrivateKey( createHash('sha256').update('alice', 'utf8').digest(), ); // Bob uses a newly generated cryptographically strong // pseudorandom key pair bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); // aliceSecret and bobSecret should be the same shared secret value console.log(aliceSecret === bobSecret); ``` ## Class: `Hash` <!-- YAML added: v0.1.92 --> * Extends: {stream.Transform} The `Hash` class is a utility for creating hash digests of data. It can be used in one of two ways: * As a [stream][] that is both readable and writable, where data is written to produce a computed hash digest on the readable side, or * Using the [`hash.update()`][] and [`hash.digest()`][] methods to produce the computed hash. The [`crypto.createHash()`][] method is used to create `Hash` instances. `Hash` objects are not to be created directly using the `new` keyword. Example: Using `Hash` objects as streams: ```mjs const { createHash, } = await import('node:crypto'); const hash = createHash('sha256'); hash.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hash.read(); if (data) { console.log(data.toString('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 } }); hash.write('some data to hash'); hash.end(); ``` ```cjs const { createHash, } = require('node:crypto'); const hash = createHash('sha256'); hash.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hash.read(); if (data) { console.log(data.toString('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 } }); hash.write('some data to hash'); hash.end(); ``` Example: Using `Hash` and piped streams: ```mjs import { createReadStream } from 'node:fs'; import { stdout } from 'node:process'; const { createHash } = await import('node:crypto'); const hash = createHash('sha256'); const input = createReadStream('test.js'); input.pipe(hash).setEncoding('hex').pipe(stdout); ``` ```cjs const { createReadStream } = require('node:fs'); const { createHash } = require('node:crypto'); const { stdout } = require('node:process'); const hash = createHash('sha256'); const input = createReadStream('test.js'); input.pipe(hash).setEncoding('hex').pipe(stdout); ``` Example: Using the [`hash.update()`][] and [`hash.digest()`][] methods: ```mjs const { createHash, } = await import('node:crypto'); const hash = createHash('sha256'); hash.update('some data to hash'); console.log(hash.digest('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 ``` ```cjs const { createHash, } = require('node:crypto'); const hash = createHash('sha256'); hash.update('some data to hash'); console.log(hash.digest('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 ``` ### `hash.copy([options])` <!-- YAML added: v13.1.0 --> * `options` {Object} [`stream.transform` options][] * Returns: {Hash} Creates a new `Hash` object that contains a deep copy of the internal state of the current `Hash` object. The optional `options` argument controls stream behavior. For XOF hash functions such as `'shake256'`, the `outputLength` option can be used to specify the desired output length in bytes. An error is thrown when an attempt is made to copy the `Hash` object after its [`hash.digest()`][] method has been called. ```mjs // Calculate a rolling hash. const { createHash, } = await import('node:crypto'); const hash = createHash('sha256'); hash.update('one'); console.log(hash.copy().digest('hex')); hash.update('two'); console.log(hash.copy().digest('hex')); hash.update('three'); console.log(hash.copy().digest('hex')); // Etc. ``` ```cjs // Calculate a rolling hash. const { createHash, } = require('node:crypto'); const hash = createHash('sha256'); hash.update('one'); console.log(hash.copy().digest('hex')); hash.update('two'); console.log(hash.copy().digest('hex')); hash.update('three'); console.log(hash.copy().digest('hex')); // Etc. ``` ### `hash.digest([encoding])` <!-- YAML added: v0.1.92 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Calculates the digest of all of the data passed to be hashed (using the [`hash.update()`][] method). If `encoding` is provided a string will be returned; otherwise a [`Buffer`][] is returned. The `Hash` object can not be used again after `hash.digest()` method has been called. Multiple calls will cause an error to be thrown. ### `hash.update(data[, inputEncoding])` <!-- YAML added: v0.1.92 changes: - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `data` {string|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the `data` string. Updates the hash content with the given `data`, the encoding of which is given in `inputEncoding`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ## Class: `Hmac` <!-- YAML added: v0.1.94 --> * Extends: {stream.Transform} The `Hmac` class is a utility for creating cryptographic HMAC digests. It can be used in one of two ways: * As a [stream][] that is both readable and writable, where data is written to produce a computed HMAC digest on the readable side, or * Using the [`hmac.update()`][] and [`hmac.digest()`][] methods to produce the computed HMAC digest. The [`crypto.createHmac()`][] method is used to create `Hmac` instances. `Hmac` objects are not to be created directly using the `new` keyword. Example: Using `Hmac` objects as streams: ```mjs const { createHmac, } = await import('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hmac.read(); if (data) { console.log(data.toString('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e } }); hmac.write('some data to hash'); hmac.end(); ``` ```cjs const { createHmac, } = require('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hmac.read(); if (data) { console.log(data.toString('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e } }); hmac.write('some data to hash'); hmac.end(); ``` Example: Using `Hmac` and piped streams: ```mjs import { createReadStream } from 'node:fs'; import { stdout } from 'node:process'; const { createHmac, } = await import('node:crypto'); const hmac = createHmac('sha256', 'a secret'); const input = createReadStream('test.js'); input.pipe(hmac).pipe(stdout); ``` ```cjs const { createReadStream, } = require('node:fs'); const { createHmac, } = require('node:crypto'); const { stdout } = require('node:process'); const hmac = createHmac('sha256', 'a secret'); const input = createReadStream('test.js'); input.pipe(hmac).pipe(stdout); ``` Example: Using the [`hmac.update()`][] and [`hmac.digest()`][] methods: ```mjs const { createHmac, } = await import('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.update('some data to hash'); console.log(hmac.digest('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e ``` ```cjs const { createHmac, } = require('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.update('some data to hash'); console.log(hmac.digest('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e ``` ### `hmac.digest([encoding])` <!-- YAML added: v0.1.94 --> * `encoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} Calculates the HMAC digest of all of the data passed using [`hmac.update()`][]. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned; The `Hmac` object can not be used again after `hmac.digest()` has been called. Multiple calls to `hmac.digest()` will result in an error being thrown. ### `hmac.update(data[, inputEncoding])` <!-- YAML added: v0.1.94 changes: - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `data` {string|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the `data` string. Updates the `Hmac` content with the given `data`, the encoding of which is given in `inputEncoding`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ## Class: `KeyObject` <!-- YAML added: v11.6.0 changes: - version: - v14.5.0 - v12.19.0 pr-url: https://github.com/nodejs/node/pull/33360 description: Instances of this class can now be passed to worker threads using `postMessage`. - version: v11.13.0 pr-url: https://github.com/nodejs/node/pull/26438 description: This class is now exported. --> Node.js uses a `KeyObject` class to represent a symmetric or asymmetric key, and each kind of key exposes different functions. The [`crypto.createSecretKey()`][], [`crypto.createPublicKey()`][] and [`crypto.createPrivateKey()`][] methods are used to create `KeyObject` instances. `KeyObject` objects are not to be created directly using the `new` keyword. Most applications should consider using the new `KeyObject` API instead of passing keys as strings or `Buffer`s due to improved security features. `KeyObject` instances can be passed to other threads via [`postMessage()`][]. The receiver obtains a cloned `KeyObject`, and the `KeyObject` does not need to be listed in the `transferList` argument. ### Static method: `KeyObject.from(key)` <!-- YAML added: v15.0.0 --> * `key` {CryptoKey} * Returns: {KeyObject} Example: Converting a `CryptoKey` instance to a `KeyObject`: ```mjs const { KeyObject } = await import('node:crypto'); const { subtle } = globalThis.crypto; const key = await subtle.generateKey({ name: 'HMAC', hash: 'SHA-256', length: 256, }, true, ['sign', 'verify']); const keyObject = KeyObject.from(key); console.log(keyObject.symmetricKeySize); // Prints: 32 (symmetric key size in bytes) ``` ```cjs const { KeyObject } = require('node:crypto'); const { subtle } = globalThis.crypto; (async function() { const key = await subtle.generateKey({ name: 'HMAC', hash: 'SHA-256', length: 256, }, true, ['sign', 'verify']); const keyObject = KeyObject.from(key); console.log(keyObject.symmetricKeySize); // Prints: 32 (symmetric key size in bytes) })(); ``` ### `keyObject.asymmetricKeyDetails` <!-- YAML added: v15.7.0 changes: - version: v16.9.0 pr-url: https://github.com/nodejs/node/pull/39851 description: Expose `RSASSA-PSS-params` sequence parameters for RSA-PSS keys. --> * {Object} * `modulusLength`: {number} Key size in bits (RSA, DSA). * `publicExponent`: {bigint} Public exponent (RSA). * `hashAlgorithm`: {string} Name of the message digest (RSA-PSS). * `mgf1HashAlgorithm`: {string} Name of the message digest used by MGF1 (RSA-PSS). * `saltLength`: {number} Minimal salt length in bytes (RSA-PSS). * `divisorLength`: {number} Size of `q` in bits (DSA). * `namedCurve`: {string} Name of the curve (EC). This property exists only on asymmetric keys. Depending on the type of the key, this object contains information about the key. None of the information obtained through this property can be used to uniquely identify a key or to compromise the security of the key. For RSA-PSS keys, if the key material contains a `RSASSA-PSS-params` sequence, the `hashAlgorithm`, `mgf1HashAlgorithm`, and `saltLength` properties will be set. Other key details might be exposed via this API using additional attributes. ### `keyObject.asymmetricKeyType` <!-- YAML added: v11.6.0 changes: - version: - v13.9.0 - v12.17.0 pr-url: https://github.com/nodejs/node/pull/31178 description: Added support for `'dh'`. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26960 description: Added support for `'rsa-pss'`. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26786 description: This property now returns `undefined` for KeyObject instances of unrecognized type instead of aborting. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26774 description: Added support for `'x25519'` and `'x448'`. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26319 description: Added support for `'ed25519'` and `'ed448'`. --> * {string} For asymmetric keys, this property represents the type of the key. Supported key types are: * `'rsa'` (OID 1.2.840.113549.1.1.1) * `'rsa-pss'` (OID 1.2.840.113549.1.1.10) * `'dsa'` (OID 1.2.840.10040.4.1) * `'ec'` (OID 1.2.840.10045.2.1) * `'x25519'` (OID 1.3.101.110) * `'x448'` (OID 1.3.101.111) * `'ed25519'` (OID 1.3.101.112) * `'ed448'` (OID 1.3.101.113) * `'dh'` (OID 1.2.840.113549.1.3.1) This property is `undefined` for unrecognized `KeyObject` types and symmetric keys. ### `keyObject.export([options])` <!-- YAML added: v11.6.0 changes: - version: v15.9.0 pr-url: https://github.com/nodejs/node/pull/37081 description: Added support for `'jwk'` format. --> * `options`: {Object} * Returns: {string | Buffer | Object} For symmetric keys, the following encoding options can be used: * `format`: {string} Must be `'buffer'` (default) or `'jwk'`. For public keys, the following encoding options can be used: * `type`: {string} Must be one of `'pkcs1'` (RSA only) or `'spki'`. * `format`: {string} Must be `'pem'`, `'der'`, or `'jwk'`. For private keys, the following encoding options can be used: * `type`: {string} Must be one of `'pkcs1'` (RSA only), `'pkcs8'` or `'sec1'` (EC only). * `format`: {string} Must be `'pem'`, `'der'`, or `'jwk'`. * `cipher`: {string} If specified, the private key will be encrypted with the given `cipher` and `passphrase` using PKCS#5 v2.0 password based encryption. * `passphrase`: {string | Buffer} The passphrase to use for encryption, see `cipher`. The result type depends on the selected encoding format, when PEM the result is a string, when DER it will be a buffer containing the data encoded as DER, when [JWK][] it will be an object. When [JWK][] encoding format was selected, all other encoding options are ignored. PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of the `cipher` and `format` options. The PKCS#8 `type` can be used with any `format` to encrypt any key algorithm (RSA, EC, or DH) by specifying a `cipher`. PKCS#1 and SEC1 can only be encrypted by specifying a `cipher` when the PEM `format` is used. For maximum compatibility, use PKCS#8 for encrypted private keys. Since PKCS#8 defines its own encryption mechanism, PEM-level encryption is not supported when encrypting a PKCS#8 key. See [RFC 5208][] for PKCS#8 encryption and [RFC 1421][] for PKCS#1 and SEC1 encryption. ### `keyObject.equals(otherKeyObject)` <!-- YAML added: - v17.7.0 - v16.15.0 --> * `otherKeyObject`: {KeyObject} A `KeyObject` with which to compare `keyObject`. * Returns: {boolean} Returns `true` or `false` depending on whether the keys have exactly the same type, value, and parameters. This method is not [constant time](https://en.wikipedia.org/wiki/Timing_attack). ### `keyObject.symmetricKeySize` <!-- YAML added: v11.6.0 --> * {number} For secret keys, this property represents the size of the key in bytes. This property is `undefined` for asymmetric keys. ### `keyObject.type` <!-- YAML added: v11.6.0 --> * {string} Depending on the type of this `KeyObject`, this property is either `'secret'` for secret (symmetric) keys, `'public'` for public (asymmetric) keys or `'private'` for private (asymmetric) keys. ## Class: `Sign` <!-- YAML added: v0.1.92 --> * Extends: {stream.Writable} The `Sign` class is a utility for generating signatures. It can be used in one of two ways: * As a writable [stream][], where data to be signed is written and the [`sign.sign()`][] method is used to generate and return the signature, or * Using the [`sign.update()`][] and [`sign.sign()`][] methods to produce the signature. The [`crypto.createSign()`][] method is used to create `Sign` instances. The argument is the string name of the hash function to use. `Sign` objects are not to be created directly using the `new` keyword. Example: Using `Sign` and [`Verify`][] objects as streams: ```mjs const { generateKeyPairSync, createSign, createVerify, } = await import('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('ec', { namedCurve: 'sect239k1', }); const sign = createSign('SHA256'); sign.write('some data to sign'); sign.end(); const signature = sign.sign(privateKey, 'hex'); const verify = createVerify('SHA256'); verify.write('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature, 'hex')); // Prints: true ``` ```cjs const { generateKeyPairSync, createSign, createVerify, } = require('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('ec', { namedCurve: 'sect239k1', }); const sign = createSign('SHA256'); sign.write('some data to sign'); sign.end(); const signature = sign.sign(privateKey, 'hex'); const verify = createVerify('SHA256'); verify.write('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature, 'hex')); // Prints: true ``` Example: Using the [`sign.update()`][] and [`verify.update()`][] methods: ```mjs const { generateKeyPairSync, createSign, createVerify, } = await import('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('rsa', { modulusLength: 2048, }); const sign = createSign('SHA256'); sign.update('some data to sign'); sign.end(); const signature = sign.sign(privateKey); const verify = createVerify('SHA256'); verify.update('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature)); // Prints: true ``` ```cjs const { generateKeyPairSync, createSign, createVerify, } = require('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('rsa', { modulusLength: 2048, }); const sign = createSign('SHA256'); sign.update('some data to sign'); sign.end(); const signature = sign.sign(privateKey); const verify = createVerify('SHA256'); verify.update('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature)); // Prints: true ``` ### `sign.sign(privateKey[, outputEncoding])` <!-- YAML added: v0.1.92 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The privateKey can also be an ArrayBuffer and CryptoKey. - version: - v13.2.0 - v12.16.0 pr-url: https://github.com/nodejs/node/pull/29292 description: This function now supports IEEE-P1363 DSA and ECDSA signatures. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26960 description: This function now supports RSA-PSS keys. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: This function now supports key objects. - version: v8.0.0 pr-url: https://github.com/nodejs/node/pull/11705 description: Support for RSASSA-PSS and additional options was added. --> <!--lint disable maximum-line-length remark-lint--> * `privateKey` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `dsaEncoding` {string} * `padding` {integer} * `saltLength` {integer} * `outputEncoding` {string} The [encoding][] of the return value. * Returns: {Buffer | string} <!--lint enable maximum-line-length remark-lint--> Calculates the signature on all the data passed through using either [`sign.update()`][] or [`sign.write()`][stream-writable-write]. If `privateKey` is not a [`KeyObject`][], this function behaves as if `privateKey` had been passed to [`crypto.createPrivateKey()`][]. If it is an object, the following additional properties can be passed: * `dsaEncoding` {string} For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following: * `'der'` (default): DER-encoded ASN.1 signature structure encoding `(r, s)`. * `'ieee-p1363'`: Signature format `r || s` as proposed in IEEE-P1363. * `padding` {integer} Optional padding value for RSA, one of the following: * `crypto.constants.RSA_PKCS1_PADDING` (default) * `crypto.constants.RSA_PKCS1_PSS_PADDING` `RSA_PKCS1_PSS_PADDING` will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of [RFC 4055][], unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of [RFC 4055][]. * `saltLength` {integer} Salt length for when padding is `RSA_PKCS1_PSS_PADDING`. The special value `crypto.constants.RSA_PSS_SALTLEN_DIGEST` sets the salt length to the digest size, `crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN` (default) sets it to the maximum permissible value. If `outputEncoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. The `Sign` object can not be again used after `sign.sign()` method has been called. Multiple calls to `sign.sign()` will result in an error being thrown. ### `sign.update(data[, inputEncoding])` <!-- YAML added: v0.1.92 changes: - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `data` {string|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the `data` string. Updates the `Sign` content with the given `data`, the encoding of which is given in `inputEncoding`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ## Class: `Verify` <!-- YAML added: v0.1.92 --> * Extends: {stream.Writable} The `Verify` class is a utility for verifying signatures. It can be used in one of two ways: * As a writable [stream][] where written data is used to validate against the supplied signature, or * Using the [`verify.update()`][] and [`verify.verify()`][] methods to verify the signature. The [`crypto.createVerify()`][] method is used to create `Verify` instances. `Verify` objects are not to be created directly using the `new` keyword. See [`Sign`][] for examples. ### `verify.update(data[, inputEncoding])` <!-- YAML added: v0.1.92 changes: - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default `inputEncoding` changed from `binary` to `utf8`. --> * `data` {string|Buffer|TypedArray|DataView} * `inputEncoding` {string} The [encoding][] of the `data` string. Updates the `Verify` content with the given `data`, the encoding of which is given in `inputEncoding`. If `inputEncoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ### `verify.verify(object, signature[, signatureEncoding])` <!-- YAML added: v0.1.92 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The object can also be an ArrayBuffer and CryptoKey. - version: - v13.2.0 - v12.16.0 pr-url: https://github.com/nodejs/node/pull/29292 description: This function now supports IEEE-P1363 DSA and ECDSA signatures. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26960 description: This function now supports RSA-PSS keys. - version: v11.7.0 pr-url: https://github.com/nodejs/node/pull/25217 description: The key can now be a private key. - version: v8.0.0 pr-url: https://github.com/nodejs/node/pull/11705 description: Support for RSASSA-PSS and additional options was added. --> <!--lint disable maximum-line-length remark-lint--> * `object` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `dsaEncoding` {string} * `padding` {integer} * `saltLength` {integer} * `signature` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `signatureEncoding` {string} The [encoding][] of the `signature` string. * Returns: {boolean} `true` or `false` depending on the validity of the signature for the data and public key. <!--lint enable maximum-line-length remark-lint--> Verifies the provided data using the given `object` and `signature`. If `object` is not a [`KeyObject`][], this function behaves as if `object` had been passed to [`crypto.createPublicKey()`][]. If it is an object, the following additional properties can be passed: * `dsaEncoding` {string} For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following: * `'der'` (default): DER-encoded ASN.1 signature structure encoding `(r, s)`. * `'ieee-p1363'`: Signature format `r || s` as proposed in IEEE-P1363. * `padding` {integer} Optional padding value for RSA, one of the following: * `crypto.constants.RSA_PKCS1_PADDING` (default) * `crypto.constants.RSA_PKCS1_PSS_PADDING` `RSA_PKCS1_PSS_PADDING` will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of [RFC 4055][], unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of [RFC 4055][]. * `saltLength` {integer} Salt length for when padding is `RSA_PKCS1_PSS_PADDING`. The special value `crypto.constants.RSA_PSS_SALTLEN_DIGEST` sets the salt length to the digest size, `crypto.constants.RSA_PSS_SALTLEN_AUTO` (default) causes it to be determined automatically. The `signature` argument is the previously calculated signature for the data, in the `signatureEncoding`. If a `signatureEncoding` is specified, the `signature` is expected to be a string; otherwise `signature` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. The `verify` object can not be used again after `verify.verify()` has been called. Multiple calls to `verify.verify()` will result in an error being thrown. Because public keys can be derived from private keys, a private key may be passed instead of a public key. ## Class: `X509Certificate` <!-- YAML added: v15.6.0 --> Encapsulates an X509 certificate and provides read-only access to its information. ```mjs const { X509Certificate } = await import('node:crypto'); const x509 = new X509Certificate('{... pem encoded cert ...}'); console.log(x509.subject); ``` ```cjs const { X509Certificate } = require('node:crypto'); const x509 = new X509Certificate('{... pem encoded cert ...}'); console.log(x509.subject); ``` ### `new X509Certificate(buffer)` <!-- YAML added: v15.6.0 --> * `buffer` {string|TypedArray|Buffer|DataView} A PEM or DER encoded X509 Certificate. ### `x509.ca` <!-- YAML added: v15.6.0 --> * Type: {boolean} Will be `true` if this is a Certificate Authority (CA) certificate. ### `x509.checkEmail(email[, options])` <!-- YAML added: v15.6.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41600 description: The subject option now defaults to `'default'`. - version: - v17.5.0 - v16.14.1 pr-url: https://github.com/nodejs/node/pull/41599 description: The `wildcards`, `partialWildcards`, `multiLabelWildcards`, and `singleLabelSubdomains` options have been removed since they had no effect. - version: - v17.5.0 - v16.15.0 pr-url: https://github.com/nodejs/node/pull/41569 description: The subject option can now be set to `'default'`. --> * `email` {string} * `options` {Object} * `subject` {string} `'default'`, `'always'`, or `'never'`. **Default:** `'default'`. * Returns: {string|undefined} Returns `email` if the certificate matches, `undefined` if it does not. Checks whether the certificate matches the given email address. If the `'subject'` option is undefined or set to `'default'`, the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any email addresses. If the `'subject'` option is set to `'always'` and if the subject alternative name extension either does not exist or does not contain a matching email address, the certificate subject is considered. If the `'subject'` option is set to `'never'`, the certificate subject is never considered, even if the certificate contains no subject alternative names. ### `x509.checkHost(name[, options])` <!-- YAML added: v15.6.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41600 description: The subject option now defaults to `'default'`. - version: - v17.5.0 - v16.15.0 pr-url: https://github.com/nodejs/node/pull/41569 description: The subject option can now be set to `'default'`. --> * `name` {string} * `options` {Object} * `subject` {string} `'default'`, `'always'`, or `'never'`. **Default:** `'default'`. * `wildcards` {boolean} **Default:** `true`. * `partialWildcards` {boolean} **Default:** `true`. * `multiLabelWildcards` {boolean} **Default:** `false`. * `singleLabelSubdomains` {boolean} **Default:** `false`. * Returns: {string|undefined} Returns a subject name that matches `name`, or `undefined` if no subject name matches `name`. Checks whether the certificate matches the given host name. If the certificate matches the given host name, the matching subject name is returned. The returned name might be an exact match (e.g., `foo.example.com`) or it might contain wildcards (e.g., `*.example.com`). Because host name comparisons are case-insensitive, the returned subject name might also differ from the given `name` in capitalization. If the `'subject'` option is undefined or set to `'default'`, the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any DNS names. This behavior is consistent with [RFC 2818][] ("HTTP Over TLS"). If the `'subject'` option is set to `'always'` and if the subject alternative name extension either does not exist or does not contain a matching DNS name, the certificate subject is considered. If the `'subject'` option is set to `'never'`, the certificate subject is never considered, even if the certificate contains no subject alternative names. ### `x509.checkIP(ip)` <!-- YAML added: v15.6.0 changes: - version: - v17.5.0 - v16.14.1 pr-url: https://github.com/nodejs/node/pull/41571 description: The `options` argument has been removed since it had no effect. --> * `ip` {string} * Returns: {string|undefined} Returns `ip` if the certificate matches, `undefined` if it does not. Checks whether the certificate matches the given IP address (IPv4 or IPv6). Only [RFC 5280][] `iPAddress` subject alternative names are considered, and they must match the given `ip` address exactly. Other subject alternative names as well as the subject field of the certificate are ignored. ### `x509.checkIssued(otherCert)` <!-- YAML added: v15.6.0 --> * `otherCert` {X509Certificate} * Returns: {boolean} Checks whether this certificate was issued by the given `otherCert`. ### `x509.checkPrivateKey(privateKey)` <!-- YAML added: v15.6.0 --> * `privateKey` {KeyObject} A private key. * Returns: {boolean} Checks whether the public key for this certificate is consistent with the given private key. ### `x509.fingerprint` <!-- YAML added: v15.6.0 --> * Type: {string} The SHA-1 fingerprint of this certificate. Because SHA-1 is cryptographically broken and because the security of SHA-1 is significantly worse than that of algorithms that are commonly used to sign certificates, consider using [`x509.fingerprint256`][] instead. ### `x509.fingerprint256` <!-- YAML added: v15.6.0 --> * Type: {string} The SHA-256 fingerprint of this certificate. ### `x509.fingerprint512` <!-- YAML added: - v17.2.0 - v16.14.0 --> * Type: {string} The SHA-512 fingerprint of this certificate. Because computing the SHA-256 fingerprint is usually faster and because it is only half the size of the SHA-512 fingerprint, [`x509.fingerprint256`][] may be a better choice. While SHA-512 presumably provides a higher level of security in general, the security of SHA-256 matches that of most algorithms that are commonly used to sign certificates. ### `x509.infoAccess` <!-- YAML added: v15.6.0 changes: - version: - v17.3.1 - v16.13.2 pr-url: https://github.com/nodejs-private/node-private/pull/300 description: Parts of this string may be encoded as JSON string literals in response to CVE-2021-44532. --> * Type: {string} A textual representation of the certificate's authority information access extension. This is a line feed separated list of access descriptions. Each line begins with the access method and the kind of the access location, followed by a colon and the value associated with the access location. After the prefix denoting the access method and the kind of the access location, the remainder of each line might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats. ### `x509.issuer` <!-- YAML added: v15.6.0 --> * Type: {string} The issuer identification included in this certificate. ### `x509.issuerCertificate` <!-- YAML added: v15.9.0 --> * Type: {X509Certificate} The issuer certificate or `undefined` if the issuer certificate is not available. ### `x509.extKeyUsage` <!-- YAML added: v15.6.0 --> * Type: {string\[]} An array detailing the key extended usages for this certificate. ### `x509.publicKey` <!-- YAML added: v15.6.0 --> * Type: {KeyObject} The public key {KeyObject} for this certificate. ### `x509.raw` <!-- YAML added: v15.6.0 --> * Type: {Buffer} A `Buffer` containing the DER encoding of this certificate. ### `x509.serialNumber` <!-- YAML added: v15.6.0 --> * Type: {string} The serial number of this certificate. Serial numbers are assigned by certificate authorities and do not uniquely identify certificates. Consider using [`x509.fingerprint256`][] as a unique identifier instead. ### `x509.subject` <!-- YAML added: v15.6.0 --> * Type: {string} The complete subject of this certificate. ### `x509.subjectAltName` <!-- YAML added: v15.6.0 changes: - version: - v17.3.1 - v16.13.2 pr-url: https://github.com/nodejs-private/node-private/pull/300 description: Parts of this string may be encoded as JSON string literals in response to CVE-2021-44532. --> * Type: {string} The subject alternative name specified for this certificate. This is a comma-separated list of subject alternative names. Each entry begins with a string identifying the kind of the subject alternative name followed by a colon and the value associated with the entry. Earlier versions of Node.js incorrectly assumed that it is safe to split this property at the two-character sequence `', '` (see [CVE-2021-44532][]). However, both malicious and legitimate certificates can contain subject alternative names that include this sequence when represented as a string. After the prefix denoting the type of the entry, the remainder of each entry might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats. ### `x509.toJSON()` <!-- YAML added: v15.6.0 --> * Type: {string} There is no standard JSON encoding for X509 certificates. The `toJSON()` method returns a string containing the PEM encoded certificate. ### `x509.toLegacyObject()` <!-- YAML added: v15.6.0 --> * Type: {Object} Returns information about this certificate using the legacy [certificate object][] encoding. ### `x509.toString()` <!-- YAML added: v15.6.0 --> * Type: {string} Returns the PEM-encoded certificate. ### `x509.validFrom` <!-- YAML added: v15.6.0 --> * Type: {string} The date/time from which this certificate is valid. ### `x509.validTo` <!-- YAML added: v15.6.0 --> * Type: {string} The date/time until which this certificate is valid. ### `x509.verify(publicKey)` <!-- YAML added: v15.6.0 --> * `publicKey` {KeyObject} A public key. * Returns: {boolean} Verifies that this certificate was signed by the given public key. Does not perform any other validation checks on the certificate. ## `node:crypto` module methods and properties ### `crypto.constants` <!-- YAML added: v6.3.0 --> * {Object} An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in [Crypto constants][]. ### `crypto.fips` <!-- YAML added: v6.0.0 deprecated: v10.0.0 --> > Stability: 0 - Deprecated Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js. This property is deprecated. Please use `crypto.setFips()` and `crypto.getFips()` instead. ### `crypto.checkPrime(candidate[, options], callback)` <!-- YAML added: v15.8.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. --> * `candidate` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint} A possible prime encoded as a sequence of big endian octets of arbitrary length. * `options` {Object} * `checks` {number} The number of Miller-Rabin probabilistic primality iterations to perform. When the value is `0` (zero), a number of checks is used that yields a false positive rate of at most 2<sup>-64</sup> for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the [`BN_is_prime_ex`][] function `nchecks` options for more details. **Default:** `0` * `callback` {Function} * `err` {Error} Set to an {Error} object if an error occurred during check. * `result` {boolean} `true` if the candidate is a prime with an error probability less than `0.25 ** options.checks`. Checks the primality of the `candidate`. ### `crypto.checkPrimeSync(candidate[, options])` <!-- YAML added: v15.8.0 --> * `candidate` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint} A possible prime encoded as a sequence of big endian octets of arbitrary length. * `options` {Object} * `checks` {number} The number of Miller-Rabin probabilistic primality iterations to perform. When the value is `0` (zero), a number of checks is used that yields a false positive rate of at most 2<sup>-64</sup> for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the [`BN_is_prime_ex`][] function `nchecks` options for more details. **Default:** `0` * Returns: {boolean} `true` if the candidate is a prime with an error probability less than `0.25 ** options.checks`. Checks the primality of the `candidate`. ### `crypto.createCipher(algorithm, password[, options])` <!-- YAML added: v0.1.94 deprecated: v10.0.0 changes: - version: - v17.9.0 - v16.17.0 pr-url: https://github.com/nodejs/node/pull/42427 description: The `authTagLength` option is now optional when using the `chacha20-poly1305` cipher and defaults to 16 bytes. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The password argument can be an ArrayBuffer and is limited to a maximum of 2 ** 31 - 1 bytes. - version: v10.10.0 pr-url: https://github.com/nodejs/node/pull/21447 description: Ciphers in OCB mode are now supported. - version: v10.2.0 pr-url: https://github.com/nodejs/node/pull/20235 description: The `authTagLength` option can now be used to produce shorter authentication tags in GCM mode and defaults to 16 bytes. --> > Stability: 0 - Deprecated: Use [`crypto.createCipheriv()`][] instead. * `algorithm` {string} * `password` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `options` {Object} [`stream.transform` options][] * Returns: {Cipher} Creates and returns a `Cipher` object that uses the given `algorithm` and `password`. The `options` argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the `authTagLength` option is required and specifies the length of the authentication tag in bytes, see [CCM mode][]. In GCM mode, the `authTagLength` option is not required but can be used to set the length of the authentication tag that will be returned by `getAuthTag()` and defaults to 16 bytes. For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent OpenSSL releases, `openssl list -cipher-algorithms` will display the available cipher algorithms. The `password` is used to derive the cipher key and initialization vector (IV). The value must be either a `'latin1'` encoded string, a [`Buffer`][], a `TypedArray`, or a `DataView`. <strong class="critical">This function is semantically insecure for all supported ciphers and fatally flawed for ciphers in counter mode (such as CTR, GCM, or CCM).</strong> The implementation of `crypto.createCipher()` derives keys using the OpenSSL function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly. In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`][] it is recommended that developers derive a key and IV on their own using [`crypto.scrypt()`][] and to use [`crypto.createCipheriv()`][] to create the `Cipher` object. Users should not use ciphers with counter mode (e.g. CTR, GCM, or CCM) in `crypto.createCipher()`. A warning is emitted when they are used in order to avoid the risk of IV reuse that causes vulnerabilities. For the case when IV is reused in GCM, see [Nonce-Disrespecting Adversaries][] for details. ### `crypto.createCipheriv(algorithm, key, iv[, options])` <!-- YAML added: v0.1.94 changes: - version: - v17.9.0 - v16.17.0 pr-url: https://github.com/nodejs/node/pull/42427 description: The `authTagLength` option is now optional when using the `chacha20-poly1305` cipher and defaults to 16 bytes. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The password and iv arguments can be an ArrayBuffer and are each limited to a maximum of 2 ** 31 - 1 bytes. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: The `key` argument can now be a `KeyObject`. - version: - v11.2.0 - v10.17.0 pr-url: https://github.com/nodejs/node/pull/24081 description: The cipher `chacha20-poly1305` (the IETF variant of ChaCha20-Poly1305) is now supported. - version: v10.10.0 pr-url: https://github.com/nodejs/node/pull/21447 description: Ciphers in OCB mode are now supported. - version: v10.2.0 pr-url: https://github.com/nodejs/node/pull/20235 description: The `authTagLength` option can now be used to produce shorter authentication tags in GCM mode and defaults to 16 bytes. - version: v9.9.0 pr-url: https://github.com/nodejs/node/pull/18644 description: The `iv` parameter may now be `null` for ciphers which do not need an initialization vector. --> * `algorithm` {string} * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `iv` {string|ArrayBuffer|Buffer|TypedArray|DataView|null} * `options` {Object} [`stream.transform` options][] * Returns: {Cipher} Creates and returns a `Cipher` object, with the given `algorithm`, `key` and initialization vector (`iv`). The `options` argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the `authTagLength` option is required and specifies the length of the authentication tag in bytes, see [CCM mode][]. In GCM mode, the `authTagLength` option is not required but can be used to set the length of the authentication tag that will be returned by `getAuthTag()` and defaults to 16 bytes. For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent OpenSSL releases, `openssl list -cipher-algorithms` will display the available cipher algorithms. The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector][]. Both arguments must be `'utf8'` encoded strings, [Buffers][`Buffer`], `TypedArray`, or `DataView`s. The `key` may optionally be a [`KeyObject`][] of type `secret`. If the cipher does not need an initialization vector, `iv` may be `null`. When passing strings for `key` or `iv`, please consider [caveats when using strings as inputs to cryptographic APIs][]. Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be. ### `crypto.createDecipher(algorithm, password[, options])` <!-- YAML added: v0.1.94 deprecated: v10.0.0 changes: - version: - v17.9.0 - v16.17.0 pr-url: https://github.com/nodejs/node/pull/42427 description: The `authTagLength` option is now optional when using the `chacha20-poly1305` cipher and defaults to 16 bytes. - version: v10.10.0 pr-url: https://github.com/nodejs/node/pull/21447 description: Ciphers in OCB mode are now supported. --> > Stability: 0 - Deprecated: Use [`crypto.createDecipheriv()`][] instead. * `algorithm` {string} * `password` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `options` {Object} [`stream.transform` options][] * Returns: {Decipher} Creates and returns a `Decipher` object that uses the given `algorithm` and `password` (key). The `options` argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the `authTagLength` option is required and specifies the length of the authentication tag in bytes, see [CCM mode][]. For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. <strong class="critical">This function is semantically insecure for all supported ciphers and fatally flawed for ciphers in counter mode (such as CTR, GCM, or CCM).</strong> The implementation of `crypto.createDecipher()` derives keys using the OpenSSL function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly. In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`][] it is recommended that developers derive a key and IV on their own using [`crypto.scrypt()`][] and to use [`crypto.createDecipheriv()`][] to create the `Decipher` object. ### `crypto.createDecipheriv(algorithm, key, iv[, options])` <!-- YAML added: v0.1.94 changes: - version: - v17.9.0 - v16.17.0 pr-url: https://github.com/nodejs/node/pull/42427 description: The `authTagLength` option is now optional when using the `chacha20-poly1305` cipher and defaults to 16 bytes. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: The `key` argument can now be a `KeyObject`. - version: - v11.2.0 - v10.17.0 pr-url: https://github.com/nodejs/node/pull/24081 description: The cipher `chacha20-poly1305` (the IETF variant of ChaCha20-Poly1305) is now supported. - version: v10.10.0 pr-url: https://github.com/nodejs/node/pull/21447 description: Ciphers in OCB mode are now supported. - version: v10.2.0 pr-url: https://github.com/nodejs/node/pull/20039 description: The `authTagLength` option can now be used to restrict accepted GCM authentication tag lengths. - version: v9.9.0 pr-url: https://github.com/nodejs/node/pull/18644 description: The `iv` parameter may now be `null` for ciphers which do not need an initialization vector. --> * `algorithm` {string} * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `iv` {string|ArrayBuffer|Buffer|TypedArray|DataView|null} * `options` {Object} [`stream.transform` options][] * Returns: {Decipher} Creates and returns a `Decipher` object that uses the given `algorithm`, `key` and initialization vector (`iv`). The `options` argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the `authTagLength` option is required and specifies the length of the authentication tag in bytes, see [CCM mode][]. In GCM mode, the `authTagLength` option is not required but can be used to restrict accepted authentication tags to those with the specified length. For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes. The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent OpenSSL releases, `openssl list -cipher-algorithms` will display the available cipher algorithms. The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector][]. Both arguments must be `'utf8'` encoded strings, [Buffers][`Buffer`], `TypedArray`, or `DataView`s. The `key` may optionally be a [`KeyObject`][] of type `secret`. If the cipher does not need an initialization vector, `iv` may be `null`. When passing strings for `key` or `iv`, please consider [caveats when using strings as inputs to cryptographic APIs][]. Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be. ### `crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])` <!-- YAML added: v0.11.12 changes: - version: v8.0.0 pr-url: https://github.com/nodejs/node/pull/12223 description: The `prime` argument can be any `TypedArray` or `DataView` now. - version: v8.0.0 pr-url: https://github.com/nodejs/node/pull/11983 description: The `prime` argument can be a `Uint8Array` now. - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default for the encoding parameters changed from `binary` to `utf8`. --> * `prime` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `primeEncoding` {string} The [encoding][] of the `prime` string. * `generator` {number|string|ArrayBuffer|Buffer|TypedArray|DataView} **Default:** `2` * `generatorEncoding` {string} The [encoding][] of the `generator` string. * Returns: {DiffieHellman} Creates a `DiffieHellman` key exchange object using the supplied `prime` and an optional specific `generator`. The `generator` argument can be a number, string, or [`Buffer`][]. If `generator` is not specified, the value `2` is used. If `primeEncoding` is specified, `prime` is expected to be a string; otherwise a [`Buffer`][], `TypedArray`, or `DataView` is expected. If `generatorEncoding` is specified, `generator` is expected to be a string; otherwise a number, [`Buffer`][], `TypedArray`, or `DataView` is expected. ### `crypto.createDiffieHellman(primeLength[, generator])` <!-- YAML added: v0.5.0 --> * `primeLength` {number} * `generator` {number} **Default:** `2` * Returns: {DiffieHellman} Creates a `DiffieHellman` key exchange object and generates a prime of `primeLength` bits using an optional specific numeric `generator`. If `generator` is not specified, the value `2` is used. ### `crypto.createDiffieHellmanGroup(name)` <!-- YAML added: v0.9.3 --> * `name` {string} * Returns: {DiffieHellmanGroup} An alias for [`crypto.getDiffieHellman()`][] ### `crypto.createECDH(curveName)` <!-- YAML added: v0.11.14 --> * `curveName` {string} * Returns: {ECDH} Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a predefined curve specified by the `curveName` string. Use [`crypto.getCurves()`][] to obtain a list of available curve names. On recent OpenSSL releases, `openssl ecparam -list_curves` will also display the name and description of each available elliptic curve. ### `crypto.createHash(algorithm[, options])` <!-- YAML added: v0.1.92 changes: - version: v12.8.0 pr-url: https://github.com/nodejs/node/pull/28805 description: The `outputLength` option was added for XOF hash functions. --> * `algorithm` {string} * `options` {Object} [`stream.transform` options][] * Returns: {Hash} Creates and returns a `Hash` object that can be used to generate hash digests using the given `algorithm`. Optional `options` argument controls stream behavior. For XOF hash functions such as `'shake256'`, the `outputLength` option can be used to specify the desired output length in bytes. The `algorithm` is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. On recent releases of OpenSSL, `openssl list -digest-algorithms` will display the available digest algorithms. Example: generating the sha256 sum of a file ```mjs import { createReadStream, } from 'node:fs'; import { argv } from 'node:process'; const { createHash, } = await import('node:crypto'); const filename = argv[2]; const hash = createHash('sha256'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hash.update(data); else { console.log(`${hash.digest('hex')} ${filename}`); } }); ``` ```cjs const { createReadStream, } = require('node:fs'); const { createHash, } = require('node:crypto'); const { argv } = require('node:process'); const filename = argv[2]; const hash = createHash('sha256'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hash.update(data); else { console.log(`${hash.digest('hex')} ${filename}`); } }); ``` ### `crypto.createHmac(algorithm, key[, options])` <!-- YAML added: v0.1.94 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The key can also be an ArrayBuffer or CryptoKey. The encoding option was added. The key cannot contain more than 2 ** 32 - 1 bytes. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: The `key` argument can now be a `KeyObject`. --> * `algorithm` {string} * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `options` {Object} [`stream.transform` options][] * `encoding` {string} The string encoding to use when `key` is a string. * Returns: {Hmac} Creates and returns an `Hmac` object that uses the given `algorithm` and `key`. Optional `options` argument controls stream behavior. The `algorithm` is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. On recent releases of OpenSSL, `openssl list -digest-algorithms` will display the available digest algorithms. The `key` is the HMAC key used to generate the cryptographic HMAC hash. If it is a [`KeyObject`][], its type must be `secret`. If it is a string, please consider [caveats when using strings as inputs to cryptographic APIs][]. If it was obtained from a cryptographically secure source of entropy, such as [`crypto.randomBytes()`][] or [`crypto.generateKey()`][], its length should not exceed the block size of `algorithm` (e.g., 512 bits for SHA-256). Example: generating the sha256 HMAC of a file ```mjs import { createReadStream, } from 'node:fs'; import { argv } from 'node:process'; const { createHmac, } = await import('node:crypto'); const filename = argv[2]; const hmac = createHmac('sha256', 'a secret'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hmac.update(data); else { console.log(`${hmac.digest('hex')} ${filename}`); } }); ``` ```cjs const { createReadStream, } = require('node:fs'); const { createHmac, } = require('node:crypto'); const { argv } = require('node:process'); const filename = argv[2]; const hmac = createHmac('sha256', 'a secret'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hmac.update(data); else { console.log(`${hmac.digest('hex')} ${filename}`); } }); ``` ### `crypto.createPrivateKey(key)` <!-- YAML added: v11.6.0 changes: - version: v15.12.0 pr-url: https://github.com/nodejs/node/pull/37254 description: The key can also be a JWK object. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The key can also be an ArrayBuffer. The encoding option was added. The key cannot contain more than 2 ** 32 - 1 bytes. --> <!--lint disable maximum-line-length remark-lint--> * `key` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView} * `key`: {string|ArrayBuffer|Buffer|TypedArray|DataView|Object} The key material, either in PEM, DER, or JWK format. * `format`: {string} Must be `'pem'`, `'der'`, or '`'jwk'`. **Default:** `'pem'`. * `type`: {string} Must be `'pkcs1'`, `'pkcs8'` or `'sec1'`. This option is required only if the `format` is `'der'` and ignored otherwise. * `passphrase`: {string | Buffer} The passphrase to use for decryption. * `encoding`: {string} The string encoding to use when `key` is a string. * Returns: {KeyObject} <!--lint enable maximum-line-length remark-lint--> Creates and returns a new key object containing a private key. If `key` is a string or `Buffer`, `format` is assumed to be `'pem'`; otherwise, `key` must be an object with the properties described above. If the private key is encrypted, a `passphrase` must be specified. The length of the passphrase is limited to 1024 bytes. ### `crypto.createPublicKey(key)` <!-- YAML added: v11.6.0 changes: - version: v15.12.0 pr-url: https://github.com/nodejs/node/pull/37254 description: The key can also be a JWK object. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The key can also be an ArrayBuffer. The encoding option was added. The key cannot contain more than 2 ** 32 - 1 bytes. - version: v11.13.0 pr-url: https://github.com/nodejs/node/pull/26278 description: The `key` argument can now be a `KeyObject` with type `private`. - version: v11.7.0 pr-url: https://github.com/nodejs/node/pull/25217 description: The `key` argument can now be a private key. --> <!--lint disable maximum-line-length remark-lint--> * `key` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView} * `key`: {string|ArrayBuffer|Buffer|TypedArray|DataView|Object} The key material, either in PEM, DER, or JWK format. * `format`: {string} Must be `'pem'`, `'der'`, or `'jwk'`. **Default:** `'pem'`. * `type`: {string} Must be `'pkcs1'` or `'spki'`. This option is required only if the `format` is `'der'` and ignored otherwise. * `encoding` {string} The string encoding to use when `key` is a string. * Returns: {KeyObject} <!--lint enable maximum-line-length remark-lint--> Creates and returns a new key object containing a public key. If `key` is a string or `Buffer`, `format` is assumed to be `'pem'`; if `key` is a `KeyObject` with type `'private'`, the public key is derived from the given private key; otherwise, `key` must be an object with the properties described above. If the format is `'pem'`, the `'key'` may also be an X.509 certificate. Because public keys can be derived from private keys, a private key may be passed instead of a public key. In that case, this function behaves as if [`crypto.createPrivateKey()`][] had been called, except that the type of the returned `KeyObject` will be `'public'` and that the private key cannot be extracted from the returned `KeyObject`. Similarly, if a `KeyObject` with type `'private'` is given, a new `KeyObject` with type `'public'` will be returned and it will be impossible to extract the private key from the returned object. ### `crypto.createSecretKey(key[, encoding])` <!-- YAML added: v11.6.0 changes: - version: - v18.8.0 - v16.18.0 pr-url: https://github.com/nodejs/node/pull/44201 description: The key can now be zero-length. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The key can also be an ArrayBuffer or string. The encoding argument was added. The key cannot contain more than 2 ** 32 - 1 bytes. --> * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `encoding` {string} The string encoding when `key` is a string. * Returns: {KeyObject} Creates and returns a new key object containing a secret key for symmetric encryption or `Hmac`. ### `crypto.createSign(algorithm[, options])` <!-- YAML added: v0.1.92 --> * `algorithm` {string} * `options` {Object} [`stream.Writable` options][] * Returns: {Sign} Creates and returns a `Sign` object that uses the given `algorithm`. Use [`crypto.getHashes()`][] to obtain the names of the available digest algorithms. Optional `options` argument controls the `stream.Writable` behavior. In some cases, a `Sign` instance can be created using the name of a signature algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest algorithm names. ### `crypto.createVerify(algorithm[, options])` <!-- YAML added: v0.1.92 --> * `algorithm` {string} * `options` {Object} [`stream.Writable` options][] * Returns: {Verify} Creates and returns a `Verify` object that uses the given algorithm. Use [`crypto.getHashes()`][] to obtain an array of names of the available signing algorithms. Optional `options` argument controls the `stream.Writable` behavior. In some cases, a `Verify` instance can be created using the name of a signature algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest algorithm names. ### `crypto.diffieHellman(options)` <!-- YAML added: - v13.9.0 - v12.17.0 --> * `options`: {Object} * `privateKey`: {KeyObject} * `publicKey`: {KeyObject} * Returns: {Buffer} Computes the Diffie-Hellman secret based on a `privateKey` and a `publicKey`. Both keys must have the same `asymmetricKeyType`, which must be one of `'dh'` (for Diffie-Hellman), `'ec'` (for ECDH), `'x448'`, or `'x25519'` (for ECDH-ES). ### `crypto.hash(algorithm, data[, outputEncoding])` <!-- YAML added: - v20.12.0 --> > Stability: 1.2 - Release candidate * `algorithm` {string|undefined} * `data` {string|Buffer|TypedArray|DataView} When `data` is a string, it will be encoded as UTF-8 before being hashed. If a different input encoding is desired for a string input, user could encode the string into a `TypedArray` using either `TextEncoder` or `Buffer.from()` and passing the encoded `TypedArray` into this API instead. * `outputEncoding` {string|undefined} [Encoding][encoding] used to encode the returned digest. **Default:** `'hex'`. * Returns: {string|Buffer} A utility for creating one-shot hash digests of data. It can be faster than the object-based `crypto.createHash()` when hashing a smaller amount of data (<= 5MB) that's readily available. If the data can be big or if it is streamed, it's still recommended to use `crypto.createHash()` instead. The `algorithm` is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. On recent releases of OpenSSL, `openssl list -digest-algorithms` will display the available digest algorithms. Example: ```cjs const crypto = require('node:crypto'); const { Buffer } = require('node:buffer'); // Hashing a string and return the result as a hex-encoded string. const string = 'Node.js'; // 10b3493287f831e81a438811a1ffba01f8cec4b7 console.log(crypto.hash('sha1', string)); // Encode a base64-encoded string into a Buffer, hash it and return // the result as a buffer. const base64 = 'Tm9kZS5qcw=='; // <Buffer 10 b3 49 32 87 f8 31 e8 1a 43 88 11 a1 ff ba 01 f8 ce c4 b7> console.log(crypto.hash('sha1', Buffer.from(base64, 'base64'), 'buffer')); ``` ```mjs import crypto from 'node:crypto'; import { Buffer } from 'node:buffer'; // Hashing a string and return the result as a hex-encoded string. const string = 'Node.js'; // 10b3493287f831e81a438811a1ffba01f8cec4b7 console.log(crypto.hash('sha1', string)); // Encode a base64-encoded string into a Buffer, hash it and return // the result as a buffer. const base64 = 'Tm9kZS5qcw=='; // <Buffer 10 b3 49 32 87 f8 31 e8 1a 43 88 11 a1 ff ba 01 f8 ce c4 b7> console.log(crypto.hash('sha1', Buffer.from(base64, 'base64'), 'buffer')); ``` ### `crypto.generateKey(type, options, callback)` <!-- YAML added: v15.0.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. --> * `type`: {string} The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`. * `options`: {Object} * `length`: {number} The bit length of the key to generate. This must be a value greater than 0. * If `type` is `'hmac'`, the minimum is 8, and the maximum length is 2<sup>31</sup>-1. If the value is not a multiple of 8, the generated key will be truncated to `Math.floor(length / 8)`. * If `type` is `'aes'`, the length must be one of `128`, `192`, or `256`. * `callback`: {Function} * `err`: {Error} * `key`: {KeyObject} Asynchronously generates a new random secret key of the given `length`. The `type` will determine which validations will be performed on the `length`. ```mjs const { generateKey, } = await import('node:crypto'); generateKey('hmac', { length: 512 }, (err, key) => { if (err) throw err; console.log(key.export().toString('hex')); // 46e..........620 }); ``` ```cjs const { generateKey, } = require('node:crypto'); generateKey('hmac', { length: 512 }, (err, key) => { if (err) throw err; console.log(key.export().toString('hex')); // 46e..........620 }); ``` The size of a generated HMAC key should not exceed the block size of the underlying hash function. See [`crypto.createHmac()`][] for more information. ### `crypto.generateKeyPair(type, options, callback)` <!-- YAML added: v10.12.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v16.10.0 pr-url: https://github.com/nodejs/node/pull/39927 description: Add ability to define `RSASSA-PSS-params` sequence parameters for RSA-PSS keys pairs. - version: - v13.9.0 - v12.17.0 pr-url: https://github.com/nodejs/node/pull/31178 description: Add support for Diffie-Hellman. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26960 description: Add support for RSA-PSS key pairs. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26774 description: Add ability to generate X25519 and X448 key pairs. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26554 description: Add ability to generate Ed25519 and Ed448 key pairs. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: The `generateKeyPair` and `generateKeyPairSync` functions now produce key objects if no encoding was specified. --> * `type`: {string} Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`. * `options`: {Object} * `modulusLength`: {number} Key size in bits (RSA, DSA). * `publicExponent`: {number} Public exponent (RSA). **Default:** `0x10001`. * `hashAlgorithm`: {string} Name of the message digest (RSA-PSS). * `mgf1HashAlgorithm`: {string} Name of the message digest used by MGF1 (RSA-PSS). * `saltLength`: {number} Minimal salt length in bytes (RSA-PSS). * `divisorLength`: {number} Size of `q` in bits (DSA). * `namedCurve`: {string} Name of the curve to use (EC). * `prime`: {Buffer} The prime parameter (DH). * `primeLength`: {number} Prime length in bits (DH). * `generator`: {number} Custom generator (DH). **Default:** `2`. * `groupName`: {string} Diffie-Hellman group name (DH). See [`crypto.getDiffieHellman()`][]. * `paramEncoding`: {string} Must be `'named'` or `'explicit'` (EC). **Default:** `'named'`. * `publicKeyEncoding`: {Object} See [`keyObject.export()`][]. * `privateKeyEncoding`: {Object} See [`keyObject.export()`][]. * `callback`: {Function} * `err`: {Error} * `publicKey`: {string | Buffer | KeyObject} * `privateKey`: {string | Buffer | KeyObject} Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported. If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function behaves as if [`keyObject.export()`][] had been called on its result. Otherwise, the respective part of the key is returned as a [`KeyObject`][]. It is recommended to encode public keys as `'spki'` and private keys as `'pkcs8'` with encryption for long-term storage: ```mjs const { generateKeyPair, } = await import('node:crypto'); generateKeyPair('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, }, (err, publicKey, privateKey) => { // Handle errors and use the generated key pair. }); ``` ```cjs const { generateKeyPair, } = require('node:crypto'); generateKeyPair('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, }, (err, publicKey, privateKey) => { // Handle errors and use the generated key pair. }); ``` On completion, `callback` will be called with `err` set to `undefined` and `publicKey` / `privateKey` representing the generated key pair. If this method is invoked as its [`util.promisify()`][]ed version, it returns a `Promise` for an `Object` with `publicKey` and `privateKey` properties. ### `crypto.generateKeyPairSync(type, options)` <!-- YAML added: v10.12.0 changes: - version: v16.10.0 pr-url: https://github.com/nodejs/node/pull/39927 description: Add ability to define `RSASSA-PSS-params` sequence parameters for RSA-PSS keys pairs. - version: - v13.9.0 - v12.17.0 pr-url: https://github.com/nodejs/node/pull/31178 description: Add support for Diffie-Hellman. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26960 description: Add support for RSA-PSS key pairs. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26774 description: Add ability to generate X25519 and X448 key pairs. - version: v12.0.0 pr-url: https://github.com/nodejs/node/pull/26554 description: Add ability to generate Ed25519 and Ed448 key pairs. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: The `generateKeyPair` and `generateKeyPairSync` functions now produce key objects if no encoding was specified. --> * `type`: {string} Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`. * `options`: {Object} * `modulusLength`: {number} Key size in bits (RSA, DSA). * `publicExponent`: {number} Public exponent (RSA). **Default:** `0x10001`. * `hashAlgorithm`: {string} Name of the message digest (RSA-PSS). * `mgf1HashAlgorithm`: {string} Name of the message digest used by MGF1 (RSA-PSS). * `saltLength`: {number} Minimal salt length in bytes (RSA-PSS). * `divisorLength`: {number} Size of `q` in bits (DSA). * `namedCurve`: {string} Name of the curve to use (EC). * `prime`: {Buffer} The prime parameter (DH). * `primeLength`: {number} Prime length in bits (DH). * `generator`: {number} Custom generator (DH). **Default:** `2`. * `groupName`: {string} Diffie-Hellman group name (DH). See [`crypto.getDiffieHellman()`][]. * `paramEncoding`: {string} Must be `'named'` or `'explicit'` (EC). **Default:** `'named'`. * `publicKeyEncoding`: {Object} See [`keyObject.export()`][]. * `privateKeyEncoding`: {Object} See [`keyObject.export()`][]. * Returns: {Object} * `publicKey`: {string | Buffer | KeyObject} * `privateKey`: {string | Buffer | KeyObject} Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported. If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function behaves as if [`keyObject.export()`][] had been called on its result. Otherwise, the respective part of the key is returned as a [`KeyObject`][]. When encoding public keys, it is recommended to use `'spki'`. When encoding private keys, it is recommended to use `'pkcs8'` with a strong passphrase, and to keep the passphrase confidential. ```mjs const { generateKeyPairSync, } = await import('node:crypto'); const { publicKey, privateKey, } = generateKeyPairSync('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, }); ``` ```cjs const { generateKeyPairSync, } = require('node:crypto'); const { publicKey, privateKey, } = generateKeyPairSync('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, }); ``` The return value `{ publicKey, privateKey }` represents the generated key pair. When PEM encoding was selected, the respective key will be a string, otherwise it will be a buffer containing the data encoded as DER. ### `crypto.generateKeySync(type, options)` <!-- YAML added: v15.0.0 --> * `type`: {string} The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`. * `options`: {Object} * `length`: {number} The bit length of the key to generate. * If `type` is `'hmac'`, the minimum is 8, and the maximum length is 2<sup>31</sup>-1. If the value is not a multiple of 8, the generated key will be truncated to `Math.floor(length / 8)`. * If `type` is `'aes'`, the length must be one of `128`, `192`, or `256`. * Returns: {KeyObject} Synchronously generates a new random secret key of the given `length`. The `type` will determine which validations will be performed on the `length`. ```mjs const { generateKeySync, } = await import('node:crypto'); const key = generateKeySync('hmac', { length: 512 }); console.log(key.export().toString('hex')); // e89..........41e ``` ```cjs const { generateKeySync, } = require('node:crypto'); const key = generateKeySync('hmac', { length: 512 }); console.log(key.export().toString('hex')); // e89..........41e ``` The size of a generated HMAC key should not exceed the block size of the underlying hash function. See [`crypto.createHmac()`][] for more information. ### `crypto.generatePrime(size[, options[, callback]])` <!-- YAML added: v15.8.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. --> * `size` {number} The size (in bits) of the prime to generate. * `options` {Object} * `add` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint} * `rem` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint} * `safe` {boolean} **Default:** `false`. * `bigint` {boolean} When `true`, the generated prime is returned as a `bigint`. * `callback` {Function} * `err` {Error} * `prime` {ArrayBuffer|bigint} Generates a pseudorandom prime of `size` bits. If `options.safe` is `true`, the prime will be a safe prime -- that is, `(prime - 1) / 2` will also be a prime. The `options.add` and `options.rem` parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman: * If `options.add` and `options.rem` are both set, the prime will satisfy the condition that `prime % add = rem`. * If only `options.add` is set and `options.safe` is not `true`, the prime will satisfy the condition that `prime % add = 1`. * If only `options.add` is set and `options.safe` is set to `true`, the prime will instead satisfy the condition that `prime % add = 3`. This is necessary because `prime % add = 1` for `options.add > 2` would contradict the condition enforced by `options.safe`. * `options.rem` is ignored if `options.add` is not given. Both `options.add` and `options.rem` must be encoded as big-endian sequences if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or `DataView`. By default, the prime is encoded as a big-endian sequence of octets in an {ArrayBuffer}. If the `bigint` option is `true`, then a {bigint} is provided. ### `crypto.generatePrimeSync(size[, options])` <!-- YAML added: v15.8.0 --> * `size` {number} The size (in bits) of the prime to generate. * `options` {Object} * `add` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint} * `rem` {ArrayBuffer|SharedArrayBuffer|TypedArray|Buffer|DataView|bigint} * `safe` {boolean} **Default:** `false`. * `bigint` {boolean} When `true`, the generated prime is returned as a `bigint`. * Returns: {ArrayBuffer|bigint} Generates a pseudorandom prime of `size` bits. If `options.safe` is `true`, the prime will be a safe prime -- that is, `(prime - 1) / 2` will also be a prime. The `options.add` and `options.rem` parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman: * If `options.add` and `options.rem` are both set, the prime will satisfy the condition that `prime % add = rem`. * If only `options.add` is set and `options.safe` is not `true`, the prime will satisfy the condition that `prime % add = 1`. * If only `options.add` is set and `options.safe` is set to `true`, the prime will instead satisfy the condition that `prime % add = 3`. This is necessary because `prime % add = 1` for `options.add > 2` would contradict the condition enforced by `options.safe`. * `options.rem` is ignored if `options.add` is not given. Both `options.add` and `options.rem` must be encoded as big-endian sequences if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or `DataView`. By default, the prime is encoded as a big-endian sequence of octets in an {ArrayBuffer}. If the `bigint` option is `true`, then a {bigint} is provided. ### `crypto.getCipherInfo(nameOrNid[, options])` <!-- YAML added: v15.0.0 --> * `nameOrNid`: {string|number} The name or nid of the cipher to query. * `options`: {Object} * `keyLength`: {number} A test key length. * `ivLength`: {number} A test IV length. * Returns: {Object} * `name` {string} The name of the cipher * `nid` {number} The nid of the cipher * `blockSize` {number} The block size of the cipher in bytes. This property is omitted when `mode` is `'stream'`. * `ivLength` {number} The expected or default initialization vector length in bytes. This property is omitted if the cipher does not use an initialization vector. * `keyLength` {number} The expected or default key length in bytes. * `mode` {string} The cipher mode. One of `'cbc'`, `'ccm'`, `'cfb'`, `'ctr'`, `'ecb'`, `'gcm'`, `'ocb'`, `'ofb'`, `'stream'`, `'wrap'`, `'xts'`. Returns information about a given cipher. Some ciphers accept variable length keys and initialization vectors. By default, the `crypto.getCipherInfo()` method will return the default values for these ciphers. To test if a given key length or iv length is acceptable for given cipher, use the `keyLength` and `ivLength` options. If the given values are unacceptable, `undefined` will be returned. ### `crypto.getCiphers()` <!-- YAML added: v0.9.3 --> * Returns: {string\[]} An array with the names of the supported cipher algorithms. ```mjs const { getCiphers, } = await import('node:crypto'); console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...] ``` ```cjs const { getCiphers, } = require('node:crypto'); console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...] ``` ### `crypto.getCurves()` <!-- YAML added: v2.3.0 --> * Returns: {string\[]} An array with the names of the supported elliptic curves. ```mjs const { getCurves, } = await import('node:crypto'); console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...] ``` ```cjs const { getCurves, } = require('node:crypto'); console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...] ``` ### `crypto.getDiffieHellman(groupName)` <!-- YAML added: v0.7.5 --> * `groupName` {string} * Returns: {DiffieHellmanGroup} Creates a predefined `DiffieHellmanGroup` key exchange object. The supported groups are listed in the documentation for [`DiffieHellmanGroup`][]. The returned object mimics the interface of objects created by [`crypto.createDiffieHellman()`][], but will not allow changing the keys (with [`diffieHellman.setPublicKey()`][], for example). The advantage of using this method is that the parties do not have to generate nor exchange a group modulus beforehand, saving both processor and communication time. Example (obtaining a shared secret): ```mjs const { getDiffieHellman, } = await import('node:crypto'); const alice = getDiffieHellman('modp14'); const bob = getDiffieHellman('modp14'); alice.generateKeys(); bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); /* aliceSecret and bobSecret should be the same */ console.log(aliceSecret === bobSecret); ``` ```cjs const { getDiffieHellman, } = require('node:crypto'); const alice = getDiffieHellman('modp14'); const bob = getDiffieHellman('modp14'); alice.generateKeys(); bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); /* aliceSecret and bobSecret should be the same */ console.log(aliceSecret === bobSecret); ``` ### `crypto.getFips()` <!-- YAML added: v10.0.0 --> * Returns: {number} `1` if and only if a FIPS compliant crypto provider is currently in use, `0` otherwise. A future semver-major release may change the return type of this API to a {boolean}. ### `crypto.getHashes()` <!-- YAML added: v0.9.3 --> * Returns: {string\[]} An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`. Hash algorithms are also called "digest" algorithms. ```mjs const { getHashes, } = await import('node:crypto'); console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...] ``` ```cjs const { getHashes, } = require('node:crypto'); console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...] ``` ### `crypto.getRandomValues(typedArray)` <!-- YAML added: v17.4.0 --> * `typedArray` {Buffer|TypedArray|DataView|ArrayBuffer} * Returns: {Buffer|TypedArray|DataView|ArrayBuffer} Returns `typedArray`. A convenient alias for [`crypto.webcrypto.getRandomValues()`][]. This implementation is not compliant with the Web Crypto spec, to write web-compatible code use [`crypto.webcrypto.getRandomValues()`][] instead. ### `crypto.hkdf(digest, ikm, salt, info, keylen, callback)` <!-- YAML added: v15.0.0 changes: - version: - v18.8.0 - v16.18.0 pr-url: https://github.com/nodejs/node/pull/44201 description: The input keying material can now be zero-length. - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. --> * `digest` {string} The digest algorithm to use. * `ikm` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject} The input keying material. Must be provided but can be zero-length. * `salt` {string|ArrayBuffer|Buffer|TypedArray|DataView} The salt value. Must be provided but can be zero-length. * `info` {string|ArrayBuffer|Buffer|TypedArray|DataView} Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes. * `keylen` {number} The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512` generates 64-byte hashes, making the maximum HKDF output 16320 bytes). * `callback` {Function} * `err` {Error} * `derivedKey` {ArrayBuffer} HKDF is a simple key derivation function defined in RFC 5869. The given `ikm`, `salt` and `info` are used with the `digest` to derive a key of `keylen` bytes. The supplied `callback` function is called with two arguments: `err` and `derivedKey`. If an errors occurs while deriving the key, `err` will be set; otherwise `err` will be `null`. The successfully generated `derivedKey` will be passed to the callback as an {ArrayBuffer}. An error will be thrown if any of the input arguments specify invalid values or types. ```mjs import { Buffer } from 'node:buffer'; const { hkdf, } = await import('node:crypto'); hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => { if (err) throw err; console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' }); ``` ```cjs const { hkdf, } = require('node:crypto'); const { Buffer } = require('node:buffer'); hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => { if (err) throw err; console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' }); ``` ### `crypto.hkdfSync(digest, ikm, salt, info, keylen)` <!-- YAML added: v15.0.0 changes: - version: - v18.8.0 - v16.18.0 pr-url: https://github.com/nodejs/node/pull/44201 description: The input keying material can now be zero-length. --> * `digest` {string} The digest algorithm to use. * `ikm` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject} The input keying material. Must be provided but can be zero-length. * `salt` {string|ArrayBuffer|Buffer|TypedArray|DataView} The salt value. Must be provided but can be zero-length. * `info` {string|ArrayBuffer|Buffer|TypedArray|DataView} Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes. * `keylen` {number} The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512` generates 64-byte hashes, making the maximum HKDF output 16320 bytes). * Returns: {ArrayBuffer} Provides a synchronous HKDF key derivation function as defined in RFC 5869. The given `ikm`, `salt` and `info` are used with the `digest` to derive a key of `keylen` bytes. The successfully generated `derivedKey` will be returned as an {ArrayBuffer}. An error will be thrown if any of the input arguments specify invalid values or types, or if the derived key cannot be generated. ```mjs import { Buffer } from 'node:buffer'; const { hkdfSync, } = await import('node:crypto'); const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64); console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' ``` ```cjs const { hkdfSync, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64); console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' ``` ### `crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)` <!-- YAML added: v0.5.5 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The password and salt arguments can also be ArrayBuffer instances. - version: v14.0.0 pr-url: https://github.com/nodejs/node/pull/30578 description: The `iterations` parameter is now restricted to positive values. Earlier releases treated other values as one. - version: v8.0.0 pr-url: https://github.com/nodejs/node/pull/11305 description: The `digest` parameter is always required now. - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/4047 description: Calling this function without passing the `digest` parameter is deprecated now and will emit a warning. - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default encoding for `password` if it is a string changed from `binary` to `utf8`. --> * `password` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `salt` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `iterations` {number} * `keylen` {number} * `digest` {string} * `callback` {Function} * `err` {Error} * `derivedKey` {Buffer} Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by `digest` is applied to derive a key of the requested byte length (`keylen`) from the `password`, `salt` and `iterations`. The supplied `callback` function is called with two arguments: `err` and `derivedKey`. If an error occurs while deriving the key, `err` will be set; otherwise `err` will be `null`. By default, the successfully generated `derivedKey` will be passed to the callback as a [`Buffer`][]. An error will be thrown if any of the input arguments specify invalid values or types. The `iterations` argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete. The `salt` should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See [NIST SP 800-132][] for details. When passing strings for `password` or `salt`, please consider [caveats when using strings as inputs to cryptographic APIs][]. ```mjs const { pbkdf2, } = await import('node:crypto'); pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); ``` ```cjs const { pbkdf2, } = require('node:crypto'); pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); ``` An array of supported digest functions can be retrieved using [`crypto.getHashes()`][]. This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the [`UV_THREADPOOL_SIZE`][] documentation for more information. ### `crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)` <!-- YAML added: v0.9.3 changes: - version: v14.0.0 pr-url: https://github.com/nodejs/node/pull/30578 description: The `iterations` parameter is now restricted to positive values. Earlier releases treated other values as one. - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/4047 description: Calling this function without passing the `digest` parameter is deprecated now and will emit a warning. - version: v6.0.0 pr-url: https://github.com/nodejs/node/pull/5522 description: The default encoding for `password` if it is a string changed from `binary` to `utf8`. --> * `password` {string|Buffer|TypedArray|DataView} * `salt` {string|Buffer|TypedArray|DataView} * `iterations` {number} * `keylen` {number} * `digest` {string} * Returns: {Buffer} Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by `digest` is applied to derive a key of the requested byte length (`keylen`) from the `password`, `salt` and `iterations`. If an error occurs an `Error` will be thrown, otherwise the derived key will be returned as a [`Buffer`][]. The `iterations` argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete. The `salt` should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See [NIST SP 800-132][] for details. When passing strings for `password` or `salt`, please consider [caveats when using strings as inputs to cryptographic APIs][]. ```mjs const { pbkdf2Sync, } = await import('node:crypto'); const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512'); console.log(key.toString('hex')); // '3745e48...08d59ae' ``` ```cjs const { pbkdf2Sync, } = require('node:crypto'); const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512'); console.log(key.toString('hex')); // '3745e48...08d59ae' ``` An array of supported digest functions can be retrieved using [`crypto.getHashes()`][]. ### `crypto.privateDecrypt(privateKey, buffer)` <!-- YAML added: v0.11.14 changes: - version: - v21.6.2 - v20.11.1 - v18.19.1 pr-url: https://github.com/nodejs-private/node-private/pull/515 description: The `RSA_PKCS1_PADDING` padding was disabled unless the OpenSSL build supports implicit rejection. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: Added string, ArrayBuffer, and CryptoKey as allowable key types. The oaepLabel can be an ArrayBuffer. The buffer can be a string or ArrayBuffer. All types that accept buffers are limited to a maximum of 2 ** 31 - 1 bytes. - version: v12.11.0 pr-url: https://github.com/nodejs/node/pull/29489 description: The `oaepLabel` option was added. - version: v12.9.0 pr-url: https://github.com/nodejs/node/pull/28335 description: The `oaepHash` option was added. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: This function now supports key objects. --> <!--lint disable maximum-line-length remark-lint--> * `privateKey` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `oaepHash` {string} The hash function to use for OAEP padding and MGF1. **Default:** `'sha1'` * `oaepLabel` {string|ArrayBuffer|Buffer|TypedArray|DataView} The label to use for OAEP padding. If not specified, no label is used. * `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `crypto.constants.RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`. * `buffer` {string|ArrayBuffer|Buffer|TypedArray|DataView} * Returns: {Buffer} A new `Buffer` with the decrypted content. <!--lint enable maximum-line-length remark-lint--> Decrypts `buffer` with `privateKey`. `buffer` was previously encrypted using the corresponding public key, for example using [`crypto.publicEncrypt()`][]. If `privateKey` is not a [`KeyObject`][], this function behaves as if `privateKey` had been passed to [`crypto.createPrivateKey()`][]. If it is an object, the `padding` property can be passed. Otherwise, this function uses `RSA_PKCS1_OAEP_PADDING`. Using `crypto.constants.RSA_PKCS1_PADDING` in [`crypto.privateDecrypt()`][] requires OpenSSL to support implicit rejection (`rsa_pkcs1_implicit_rejection`). If the version of OpenSSL used by Node.js does not support this feature, attempting to use `RSA_PKCS1_PADDING` will fail. ### `crypto.privateEncrypt(privateKey, buffer)` <!-- YAML added: v1.1.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: Added string, ArrayBuffer, and CryptoKey as allowable key types. The passphrase can be an ArrayBuffer. The buffer can be a string or ArrayBuffer. All types that accept buffers are limited to a maximum of 2 ** 31 - 1 bytes. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: This function now supports key objects. --> <!--lint disable maximum-line-length remark-lint--> * `privateKey` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} A PEM encoded private key. * `passphrase` {string|ArrayBuffer|Buffer|TypedArray|DataView} An optional passphrase for the private key. * `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `crypto.constants.RSA_PKCS1_PADDING`. * `encoding` {string} The string encoding to use when `buffer`, `key`, or `passphrase` are strings. * `buffer` {string|ArrayBuffer|Buffer|TypedArray|DataView} * Returns: {Buffer} A new `Buffer` with the encrypted content. <!--lint enable maximum-line-length remark-lint--> Encrypts `buffer` with `privateKey`. The returned data can be decrypted using the corresponding public key, for example using [`crypto.publicDecrypt()`][]. If `privateKey` is not a [`KeyObject`][], this function behaves as if `privateKey` had been passed to [`crypto.createPrivateKey()`][]. If it is an object, the `padding` property can be passed. Otherwise, this function uses `RSA_PKCS1_PADDING`. ### `crypto.publicDecrypt(key, buffer)` <!-- YAML added: v1.1.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: Added string, ArrayBuffer, and CryptoKey as allowable key types. The passphrase can be an ArrayBuffer. The buffer can be a string or ArrayBuffer. All types that accept buffers are limited to a maximum of 2 ** 31 - 1 bytes. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: This function now supports key objects. --> <!--lint disable maximum-line-length remark-lint--> * `key` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `passphrase` {string|ArrayBuffer|Buffer|TypedArray|DataView} An optional passphrase for the private key. * `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `crypto.constants.RSA_PKCS1_PADDING`. * `encoding` {string} The string encoding to use when `buffer`, `key`, or `passphrase` are strings. * `buffer` {string|ArrayBuffer|Buffer|TypedArray|DataView} * Returns: {Buffer} A new `Buffer` with the decrypted content. <!--lint enable maximum-line-length remark-lint--> Decrypts `buffer` with `key`.`buffer` was previously encrypted using the corresponding private key, for example using [`crypto.privateEncrypt()`][]. If `key` is not a [`KeyObject`][], this function behaves as if `key` had been passed to [`crypto.createPublicKey()`][]. If it is an object, the `padding` property can be passed. Otherwise, this function uses `RSA_PKCS1_PADDING`. Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key. ### `crypto.publicEncrypt(key, buffer)` <!-- YAML added: v0.11.14 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: Added string, ArrayBuffer, and CryptoKey as allowable key types. The oaepLabel and passphrase can be ArrayBuffers. The buffer can be a string or ArrayBuffer. All types that accept buffers are limited to a maximum of 2 ** 31 - 1 bytes. - version: v12.11.0 pr-url: https://github.com/nodejs/node/pull/29489 description: The `oaepLabel` option was added. - version: v12.9.0 pr-url: https://github.com/nodejs/node/pull/28335 description: The `oaepHash` option was added. - version: v11.6.0 pr-url: https://github.com/nodejs/node/pull/24234 description: This function now supports key objects. --> <!--lint disable maximum-line-length remark-lint--> * `key` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `key` {string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} A PEM encoded public or private key, {KeyObject}, or {CryptoKey}. * `oaepHash` {string} The hash function to use for OAEP padding and MGF1. **Default:** `'sha1'` * `oaepLabel` {string|ArrayBuffer|Buffer|TypedArray|DataView} The label to use for OAEP padding. If not specified, no label is used. * `passphrase` {string|ArrayBuffer|Buffer|TypedArray|DataView} An optional passphrase for the private key. * `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `crypto.constants.RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`. * `encoding` {string} The string encoding to use when `buffer`, `key`, `oaepLabel`, or `passphrase` are strings. * `buffer` {string|ArrayBuffer|Buffer|TypedArray|DataView} * Returns: {Buffer} A new `Buffer` with the encrypted content. <!--lint enable maximum-line-length remark-lint--> Encrypts the content of `buffer` with `key` and returns a new [`Buffer`][] with encrypted content. The returned data can be decrypted using the corresponding private key, for example using [`crypto.privateDecrypt()`][]. If `key` is not a [`KeyObject`][], this function behaves as if `key` had been passed to [`crypto.createPublicKey()`][]. If it is an object, the `padding` property can be passed. Otherwise, this function uses `RSA_PKCS1_OAEP_PADDING`. Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key. ### `crypto.randomBytes(size[, callback])` <!-- YAML added: v0.5.8 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v9.0.0 pr-url: https://github.com/nodejs/node/pull/16454 description: Passing `null` as the `callback` argument now throws `ERR_INVALID_CALLBACK`. --> * `size` {number} The number of bytes to generate. The `size` must not be larger than `2**31 - 1`. * `callback` {Function} * `err` {Error} * `buf` {Buffer} * Returns: {Buffer} if the `callback` function is not provided. Generates cryptographically strong pseudorandom data. The `size` argument is a number indicating the number of bytes to generate. If a `callback` function is provided, the bytes are generated asynchronously and the `callback` function is invoked with two arguments: `err` and `buf`. If an error occurs, `err` will be an `Error` object; otherwise it is `null`. The `buf` argument is a [`Buffer`][] containing the generated bytes. ```mjs // Asynchronous const { randomBytes, } = await import('node:crypto'); randomBytes(256, (err, buf) => { if (err) throw err; console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`); }); ``` ```cjs // Asynchronous const { randomBytes, } = require('node:crypto'); randomBytes(256, (err, buf) => { if (err) throw err; console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`); }); ``` If the `callback` function is not provided, the random bytes are generated synchronously and returned as a [`Buffer`][]. An error will be thrown if there is a problem generating the bytes. ```mjs // Synchronous const { randomBytes, } = await import('node:crypto'); const buf = randomBytes(256); console.log( `${buf.length} bytes of random data: ${buf.toString('hex')}`); ``` ```cjs // Synchronous const { randomBytes, } = require('node:crypto'); const buf = randomBytes(256); console.log( `${buf.length} bytes of random data: ${buf.toString('hex')}`); ``` The `crypto.randomBytes()` method will not complete until there is sufficient entropy available. This should normally never take longer than a few milliseconds. The only time when generating the random bytes may conceivably block for a longer period of time is right after boot, when the whole system is still low on entropy. This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the [`UV_THREADPOOL_SIZE`][] documentation for more information. The asynchronous version of `crypto.randomBytes()` is carried out in a single threadpool request. To minimize threadpool task length variation, partition large `randomBytes` requests when doing so as part of fulfilling a client request. ### `crypto.randomFillSync(buffer[, offset][, size])` <!-- YAML added: - v7.10.0 - v6.13.0 changes: - version: v9.0.0 pr-url: https://github.com/nodejs/node/pull/15231 description: The `buffer` argument may be any `TypedArray` or `DataView`. --> * `buffer` {ArrayBuffer|Buffer|TypedArray|DataView} Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`. * `offset` {number} **Default:** `0` * `size` {number} **Default:** `buffer.length - offset`. The `size` must not be larger than `2**31 - 1`. * Returns: {ArrayBuffer|Buffer|TypedArray|DataView} The object passed as `buffer` argument. Synchronous version of [`crypto.randomFill()`][]. ```mjs import { Buffer } from 'node:buffer'; const { randomFillSync } = await import('node:crypto'); const buf = Buffer.alloc(10); console.log(randomFillSync(buf).toString('hex')); randomFillSync(buf, 5); console.log(buf.toString('hex')); // The above is equivalent to the following: randomFillSync(buf, 5, 5); console.log(buf.toString('hex')); ``` ```cjs const { randomFillSync } = require('node:crypto'); const { Buffer } = require('node:buffer'); const buf = Buffer.alloc(10); console.log(randomFillSync(buf).toString('hex')); randomFillSync(buf, 5); console.log(buf.toString('hex')); // The above is equivalent to the following: randomFillSync(buf, 5, 5); console.log(buf.toString('hex')); ``` Any `ArrayBuffer`, `TypedArray` or `DataView` instance may be passed as `buffer`. ```mjs import { Buffer } from 'node:buffer'; const { randomFillSync } = await import('node:crypto'); const a = new Uint32Array(10); console.log(Buffer.from(randomFillSync(a).buffer, a.byteOffset, a.byteLength).toString('hex')); const b = new DataView(new ArrayBuffer(10)); console.log(Buffer.from(randomFillSync(b).buffer, b.byteOffset, b.byteLength).toString('hex')); const c = new ArrayBuffer(10); console.log(Buffer.from(randomFillSync(c)).toString('hex')); ``` ```cjs const { randomFillSync } = require('node:crypto'); const { Buffer } = require('node:buffer'); const a = new Uint32Array(10); console.log(Buffer.from(randomFillSync(a).buffer, a.byteOffset, a.byteLength).toString('hex')); const b = new DataView(new ArrayBuffer(10)); console.log(Buffer.from(randomFillSync(b).buffer, b.byteOffset, b.byteLength).toString('hex')); const c = new ArrayBuffer(10); console.log(Buffer.from(randomFillSync(c)).toString('hex')); ``` ### `crypto.randomFill(buffer[, offset][, size], callback)` <!-- YAML added: - v7.10.0 - v6.13.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v9.0.0 pr-url: https://github.com/nodejs/node/pull/15231 description: The `buffer` argument may be any `TypedArray` or `DataView`. --> * `buffer` {ArrayBuffer|Buffer|TypedArray|DataView} Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`. * `offset` {number} **Default:** `0` * `size` {number} **Default:** `buffer.length - offset`. The `size` must not be larger than `2**31 - 1`. * `callback` {Function} `function(err, buf) {}`. This function is similar to [`crypto.randomBytes()`][] but requires the first argument to be a [`Buffer`][] that will be filled. It also requires that a callback is passed in. If the `callback` function is not provided, an error will be thrown. ```mjs import { Buffer } from 'node:buffer'; const { randomFill } = await import('node:crypto'); const buf = Buffer.alloc(10); randomFill(buf, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); randomFill(buf, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); // The above is equivalent to the following: randomFill(buf, 5, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); ``` ```cjs const { randomFill } = require('node:crypto'); const { Buffer } = require('node:buffer'); const buf = Buffer.alloc(10); randomFill(buf, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); randomFill(buf, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); // The above is equivalent to the following: randomFill(buf, 5, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); ``` Any `ArrayBuffer`, `TypedArray`, or `DataView` instance may be passed as `buffer`. While this includes instances of `Float32Array` and `Float64Array`, this function should not be used to generate random floating-point numbers. The result may contain `+Infinity`, `-Infinity`, and `NaN`, and even if the array contains finite numbers only, they are not drawn from a uniform random distribution and have no meaningful lower or upper bounds. ```mjs import { Buffer } from 'node:buffer'; const { randomFill } = await import('node:crypto'); const a = new Uint32Array(10); randomFill(a, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const b = new DataView(new ArrayBuffer(10)); randomFill(b, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const c = new ArrayBuffer(10); randomFill(c, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf).toString('hex')); }); ``` ```cjs const { randomFill } = require('node:crypto'); const { Buffer } = require('node:buffer'); const a = new Uint32Array(10); randomFill(a, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const b = new DataView(new ArrayBuffer(10)); randomFill(b, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const c = new ArrayBuffer(10); randomFill(c, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf).toString('hex')); }); ``` This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the [`UV_THREADPOOL_SIZE`][] documentation for more information. The asynchronous version of `crypto.randomFill()` is carried out in a single threadpool request. To minimize threadpool task length variation, partition large `randomFill` requests when doing so as part of fulfilling a client request. ### `crypto.randomInt([min, ]max[, callback])` <!-- YAML added: - v14.10.0 - v12.19.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. --> * `min` {integer} Start of random range (inclusive). **Default:** `0`. * `max` {integer} End of random range (exclusive). * `callback` {Function} `function(err, n) {}`. Return a random integer `n` such that `min <= n < max`. This implementation avoids [modulo bias][]. The range (`max - min`) must be less than 2<sup>48</sup>. `min` and `max` must be [safe integers][]. If the `callback` function is not provided, the random integer is generated synchronously. ```mjs // Asynchronous const { randomInt, } = await import('node:crypto'); randomInt(3, (err, n) => { if (err) throw err; console.log(`Random number chosen from (0, 1, 2): ${n}`); }); ``` ```cjs // Asynchronous const { randomInt, } = require('node:crypto'); randomInt(3, (err, n) => { if (err) throw err; console.log(`Random number chosen from (0, 1, 2): ${n}`); }); ``` ```mjs // Synchronous const { randomInt, } = await import('node:crypto'); const n = randomInt(3); console.log(`Random number chosen from (0, 1, 2): ${n}`); ``` ```cjs // Synchronous const { randomInt, } = require('node:crypto'); const n = randomInt(3); console.log(`Random number chosen from (0, 1, 2): ${n}`); ``` ```mjs // With `min` argument const { randomInt, } = await import('node:crypto'); const n = randomInt(1, 7); console.log(`The dice rolled: ${n}`); ``` ```cjs // With `min` argument const { randomInt, } = require('node:crypto'); const n = randomInt(1, 7); console.log(`The dice rolled: ${n}`); ``` ### `crypto.randomUUID([options])` <!-- YAML added: - v15.6.0 - v14.17.0 --> * `options` {Object} * `disableEntropyCache` {boolean} By default, to improve performance, Node.js generates and caches enough random data to generate up to 128 random UUIDs. To generate a UUID without using the cache, set `disableEntropyCache` to `true`. **Default:** `false`. * Returns: {string} Generates a random [RFC 4122][] version 4 UUID. The UUID is generated using a cryptographic pseudorandom number generator. ### `crypto.scrypt(password, salt, keylen[, options], callback)` <!-- YAML added: v10.5.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The password and salt arguments can also be ArrayBuffer instances. - version: - v12.8.0 - v10.17.0 pr-url: https://github.com/nodejs/node/pull/28799 description: The `maxmem` value can now be any safe integer. - version: v10.9.0 pr-url: https://github.com/nodejs/node/pull/21525 description: The `cost`, `blockSize` and `parallelization` option names have been added. --> * `password` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `salt` {string|ArrayBuffer|Buffer|TypedArray|DataView} * `keylen` {number} * `options` {Object} * `cost` {number} CPU/memory cost parameter. Must be a power of two greater than one. **Default:** `16384`. * `blockSize` {number} Block size parameter. **Default:** `8`. * `parallelization` {number} Parallelization parameter. **Default:** `1`. * `N` {number} Alias for `cost`. Only one of both may be specified. * `r` {number} Alias for `blockSize`. Only one of both may be specified. * `p` {number} Alias for `parallelization`. Only one of both may be specified. * `maxmem` {number} Memory upper bound. It is an error when (approximately) `128 * N * r > maxmem`. **Default:** `32 * 1024 * 1024`. * `callback` {Function} * `err` {Error} * `derivedKey` {Buffer} Provides an asynchronous [scrypt][] implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding. The `salt` should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See [NIST SP 800-132][] for details. When passing strings for `password` or `salt`, please consider [caveats when using strings as inputs to cryptographic APIs][]. The `callback` function is called with two arguments: `err` and `derivedKey`. `err` is an exception object when key derivation fails, otherwise `err` is `null`. `derivedKey` is passed to the callback as a [`Buffer`][]. An exception is thrown when any of the input arguments specify invalid values or types. ```mjs const { scrypt, } = await import('node:crypto'); // Using the factory defaults. scrypt('password', 'salt', 64, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); // Using a custom N parameter. Must be a power of two. scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...aa39b34' }); ``` ```cjs const { scrypt, } = require('node:crypto'); // Using the factory defaults. scrypt('password', 'salt', 64, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); // Using a custom N parameter. Must be a power of two. scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...aa39b34' }); ``` ### `crypto.scryptSync(password, salt, keylen[, options])` <!-- YAML added: v10.5.0 changes: - version: - v12.8.0 - v10.17.0 pr-url: https://github.com/nodejs/node/pull/28799 description: The `maxmem` value can now be any safe integer. - version: v10.9.0 pr-url: https://github.com/nodejs/node/pull/21525 description: The `cost`, `blockSize` and `parallelization` option names have been added. --> * `password` {string|Buffer|TypedArray|DataView} * `salt` {string|Buffer|TypedArray|DataView} * `keylen` {number} * `options` {Object} * `cost` {number} CPU/memory cost parameter. Must be a power of two greater than one. **Default:** `16384`. * `blockSize` {number} Block size parameter. **Default:** `8`. * `parallelization` {number} Parallelization parameter. **Default:** `1`. * `N` {number} Alias for `cost`. Only one of both may be specified. * `r` {number} Alias for `blockSize`. Only one of both may be specified. * `p` {number} Alias for `parallelization`. Only one of both may be specified. * `maxmem` {number} Memory upper bound. It is an error when (approximately) `128 * N * r > maxmem`. **Default:** `32 * 1024 * 1024`. * Returns: {Buffer} Provides a synchronous [scrypt][] implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding. The `salt` should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See [NIST SP 800-132][] for details. When passing strings for `password` or `salt`, please consider [caveats when using strings as inputs to cryptographic APIs][]. An exception is thrown when key derivation fails, otherwise the derived key is returned as a [`Buffer`][]. An exception is thrown when any of the input arguments specify invalid values or types. ```mjs const { scryptSync, } = await import('node:crypto'); // Using the factory defaults. const key1 = scryptSync('password', 'salt', 64); console.log(key1.toString('hex')); // '3745e48...08d59ae' // Using a custom N parameter. Must be a power of two. const key2 = scryptSync('password', 'salt', 64, { N: 1024 }); console.log(key2.toString('hex')); // '3745e48...aa39b34' ``` ```cjs const { scryptSync, } = require('node:crypto'); // Using the factory defaults. const key1 = scryptSync('password', 'salt', 64); console.log(key1.toString('hex')); // '3745e48...08d59ae' // Using a custom N parameter. Must be a power of two. const key2 = scryptSync('password', 'salt', 64, { N: 1024 }); console.log(key2.toString('hex')); // '3745e48...aa39b34' ``` ### `crypto.secureHeapUsed()` <!-- YAML added: v15.6.0 --> * Returns: {Object} * `total` {number} The total allocated secure heap size as specified using the `--secure-heap=n` command-line flag. * `min` {number} The minimum allocation from the secure heap as specified using the `--secure-heap-min` command-line flag. * `used` {number} The total number of bytes currently allocated from the secure heap. * `utilization` {number} The calculated ratio of `used` to `total` allocated bytes. ### `crypto.setEngine(engine[, flags])` <!-- YAML added: v0.11.11 changes: - version: v20.16.0 pr-url: https://github.com/nodejs/node/pull/53329 description: Custom engine support in OpenSSL 3 is deprecated. --> * `engine` {string} * `flags` {crypto.constants} **Default:** `crypto.constants.ENGINE_METHOD_ALL` Load and set the `engine` for some or all OpenSSL functions (selected by flags). Support for custom engines in OpenSSL is deprecated from OpenSSL 3. `engine` could be either an id or a path to the engine's shared library. The optional `flags` argument uses `ENGINE_METHOD_ALL` by default. The `flags` is a bit field taking one of or a mix of the following flags (defined in `crypto.constants`): * `crypto.constants.ENGINE_METHOD_RSA` * `crypto.constants.ENGINE_METHOD_DSA` * `crypto.constants.ENGINE_METHOD_DH` * `crypto.constants.ENGINE_METHOD_RAND` * `crypto.constants.ENGINE_METHOD_EC` * `crypto.constants.ENGINE_METHOD_CIPHERS` * `crypto.constants.ENGINE_METHOD_DIGESTS` * `crypto.constants.ENGINE_METHOD_PKEY_METHS` * `crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS` * `crypto.constants.ENGINE_METHOD_ALL` * `crypto.constants.ENGINE_METHOD_NONE` ### `crypto.setFips(bool)` <!-- YAML added: v10.0.0 --> * `bool` {boolean} `true` to enable FIPS mode. Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available. ### `crypto.sign(algorithm, data, key[, callback])` <!-- YAML added: v12.0.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v15.12.0 pr-url: https://github.com/nodejs/node/pull/37500 description: Optional callback argument added. - version: - v13.2.0 - v12.16.0 pr-url: https://github.com/nodejs/node/pull/29292 description: This function now supports IEEE-P1363 DSA and ECDSA signatures. --> <!--lint disable maximum-line-length remark-lint--> * `algorithm` {string | null | undefined} * `data` {ArrayBuffer|Buffer|TypedArray|DataView} * `key` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `callback` {Function} * `err` {Error} * `signature` {Buffer} * Returns: {Buffer} if the `callback` function is not provided. <!--lint enable maximum-line-length remark-lint--> Calculates and returns the signature for `data` using the given private key and algorithm. If `algorithm` is `null` or `undefined`, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448). If `key` is not a [`KeyObject`][], this function behaves as if `key` had been passed to [`crypto.createPrivateKey()`][]. If it is an object, the following additional properties can be passed: * `dsaEncoding` {string} For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following: * `'der'` (default): DER-encoded ASN.1 signature structure encoding `(r, s)`. * `'ieee-p1363'`: Signature format `r || s` as proposed in IEEE-P1363. * `padding` {integer} Optional padding value for RSA, one of the following: * `crypto.constants.RSA_PKCS1_PADDING` (default) * `crypto.constants.RSA_PKCS1_PSS_PADDING` `RSA_PKCS1_PSS_PADDING` will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of [RFC 4055][]. * `saltLength` {integer} Salt length for when padding is `RSA_PKCS1_PSS_PADDING`. The special value `crypto.constants.RSA_PSS_SALTLEN_DIGEST` sets the salt length to the digest size, `crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN` (default) sets it to the maximum permissible value. If the `callback` function is provided this function uses libuv's threadpool. ### `crypto.subtle` <!-- YAML added: v17.4.0 --> * Type: {SubtleCrypto} A convenient alias for [`crypto.webcrypto.subtle`][]. ### `crypto.timingSafeEqual(a, b)` <!-- YAML added: v6.6.0 changes: - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The a and b arguments can also be ArrayBuffer. --> * `a` {ArrayBuffer|Buffer|TypedArray|DataView} * `b` {ArrayBuffer|Buffer|TypedArray|DataView} * Returns: {boolean} This function compares the underlying bytes that represent the given `ArrayBuffer`, `TypedArray`, or `DataView` instances using a constant-time algorithm. This function does not leak timing information that would allow an attacker to guess one of the values. This is suitable for comparing HMAC digests or secret values like authentication cookies or [capability urls](https://www.w3.org/TR/capability-urls/). `a` and `b` must both be `Buffer`s, `TypedArray`s, or `DataView`s, and they must have the same byte length. An error is thrown if `a` and `b` have different byte lengths. If at least one of `a` and `b` is a `TypedArray` with more than one byte per entry, such as `Uint16Array`, the result will be computed using the platform byte order. <strong class="critical">When both of the inputs are `Float32Array`s or `Float64Array`s, this function might return unexpected results due to IEEE 754 encoding of floating-point numbers. In particular, neither `x === y` nor `Object.is(x, y)` implies that the byte representations of two floating-point numbers `x` and `y` are equal.</strong> Use of `crypto.timingSafeEqual` does not guarantee that the _surrounding_ code is timing-safe. Care should be taken to ensure that the surrounding code does not introduce timing vulnerabilities. ### `crypto.verify(algorithm, data, key, signature[, callback])` <!-- YAML added: v12.0.0 changes: - version: v18.0.0 pr-url: https://github.com/nodejs/node/pull/41678 description: Passing an invalid callback to the `callback` argument now throws `ERR_INVALID_ARG_TYPE` instead of `ERR_INVALID_CALLBACK`. - version: v15.12.0 pr-url: https://github.com/nodejs/node/pull/37500 description: Optional callback argument added. - version: v15.0.0 pr-url: https://github.com/nodejs/node/pull/35093 description: The data, key, and signature arguments can also be ArrayBuffer. - version: - v13.2.0 - v12.16.0 pr-url: https://github.com/nodejs/node/pull/29292 description: This function now supports IEEE-P1363 DSA and ECDSA signatures. --> <!--lint disable maximum-line-length remark-lint--> * `algorithm` {string|null|undefined} * `data` {ArrayBuffer| Buffer|TypedArray|DataView} * `key` {Object|string|ArrayBuffer|Buffer|TypedArray|DataView|KeyObject|CryptoKey} * `signature` {ArrayBuffer|Buffer|TypedArray|DataView} * `callback` {Function} * `err` {Error} * `result` {boolean} * Returns: {boolean} `true` or `false` depending on the validity of the signature for the data and public key if the `callback` function is not provided. <!--lint enable maximum-line-length remark-lint--> Verifies the given signature for `data` using the given key and algorithm. If `algorithm` is `null` or `undefined`, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448). If `key` is not a [`KeyObject`][], this function behaves as if `key` had been passed to [`crypto.createPublicKey()`][]. If it is an object, the following additional properties can be passed: * `dsaEncoding` {string} For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following: * `'der'` (default): DER-encoded ASN.1 signature structure encoding `(r, s)`. * `'ieee-p1363'`: Signature format `r || s` as proposed in IEEE-P1363. * `padding` {integer} Optional padding value for RSA, one of the following: * `crypto.constants.RSA_PKCS1_PADDING` (default) * `crypto.constants.RSA_PKCS1_PSS_PADDING` `RSA_PKCS1_PSS_PADDING` will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of [RFC 4055][]. * `saltLength` {integer} Salt length for when padding is `RSA_PKCS1_PSS_PADDING`. The special value `crypto.constants.RSA_PSS_SALTLEN_DIGEST` sets the salt length to the digest size, `crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN` (default) sets it to the maximum permissible value. The `signature` argument is the previously calculated signature for the `data`. Because public keys can be derived from private keys, a private key or a public key may be passed for `key`. If the `callback` function is provided this function uses libuv's threadpool. ### `crypto.webcrypto` <!-- YAML added: v15.0.0 --> Type: {Crypto} An implementation of the Web Crypto API standard. See the [Web Crypto API documentation][] for details. ## Notes ### Using strings as inputs to cryptographic APIs For historical reasons, many cryptographic APIs provided by Node.js accept strings as inputs where the underlying cryptographic algorithm works on byte sequences. These instances include plaintexts, ciphertexts, symmetric keys, initialization vectors, passphrases, salts, authentication tags, and additional authenticated data. When passing strings to cryptographic APIs, consider the following factors. * Not all byte sequences are valid UTF-8 strings. Therefore, when a byte sequence of length `n` is derived from a string, its entropy is generally lower than the entropy of a random or pseudorandom `n` byte sequence. For example, no UTF-8 string will result in the byte sequence `c0 af`. Secret keys should almost exclusively be random or pseudorandom byte sequences. * Similarly, when converting random or pseudorandom byte sequences to UTF-8 strings, subsequences that do not represent valid code points may be replaced by the Unicode replacement character (`U+FFFD`). The byte representation of the resulting Unicode string may, therefore, not be equal to the byte sequence that the string was created from. ```js const original = [0xc0, 0xaf]; const bytesAsString = Buffer.from(original).toString('utf8'); const stringAsBytes = Buffer.from(bytesAsString, 'utf8'); console.log(stringAsBytes); // Prints '<Buffer ef bf bd ef bf bd>'. ``` The outputs of ciphers, hash functions, signature algorithms, and key derivation functions are pseudorandom byte sequences and should not be used as Unicode strings. * When strings are obtained from user input, some Unicode characters can be represented in multiple equivalent ways that result in different byte sequences. For example, when passing a user passphrase to a key derivation function, such as PBKDF2 or scrypt, the result of the key derivation function depends on whether the string uses composed or decomposed characters. Node.js does not normalize character representations. Developers should consider using [`String.prototype.normalize()`][] on user inputs before passing them to cryptographic APIs. ### Legacy streams API (prior to Node.js 0.10) The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were [`Buffer`][] objects for handling binary data. As such, many `crypto` classes have methods not typically found on other Node.js classes that implement the [streams][stream] API (e.g. `update()`, `final()`, or `digest()`). Also, many methods accepted and returned `'latin1'` encoded strings by default rather than `Buffer`s. This default was changed after Node.js v0.8 to use [`Buffer`][] objects by default instead. ### Support for weak or compromised algorithms The `node:crypto` module still supports some algorithms which are already compromised and are not recommended for use. The API also allows the use of ciphers and hashes with a small key size that are too weak for safe use. Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements. Based on the recommendations of [NIST SP 800-131A][]: * MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures. * The key used with RSA, DSA, and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years. * The DH groups of `modp1`, `modp2` and `modp5` have a key size smaller than 2048 bits and are not recommended. See the reference for other recommendations and details. Some algorithms that have known weaknesses and are of little relevance in practice are only available through the [legacy provider][], which is not enabled by default. ### CCM mode CCM is one of the supported [AEAD algorithms][]. Applications which use this mode must adhere to certain restrictions when using the cipher API: * The authentication tag length must be specified during cipher creation by setting the `authTagLength` option and must be one of 4, 6, 8, 10, 12, 14 or 16 bytes. * The length of the initialization vector (nonce) `N` must be between 7 and 13 bytes (`7 ≤ N ≤ 13`). * The length of the plaintext is limited to `2 ** (8 * (15 - N))` bytes. * When decrypting, the authentication tag must be set via `setAuthTag()` before calling `update()`. Otherwise, decryption will fail and `final()` will throw an error in compliance with section 2.6 of [RFC 3610][]. * Using stream methods such as `write(data)`, `end(data)` or `pipe()` in CCM mode might fail as CCM cannot handle more than one chunk of data per instance. * When passing additional authenticated data (AAD), the length of the actual message in bytes must be passed to `setAAD()` via the `plaintextLength` option. Many crypto libraries include the authentication tag in the ciphertext, which means that they produce ciphertexts of the length `plaintextLength + authTagLength`. Node.js does not include the authentication tag, so the ciphertext length is always `plaintextLength`. This is not necessary if no AAD is used. * As CCM processes the whole message at once, `update()` must be called exactly once. * Even though calling `update()` is sufficient to encrypt/decrypt the message, applications _must_ call `final()` to compute or verify the authentication tag. ```mjs import { Buffer } from 'node:buffer'; const { createCipheriv, createDecipheriv, randomBytes, } = await import('node:crypto'); const key = 'keykeykeykeykeykeykeykey'; const nonce = randomBytes(12); const aad = Buffer.from('0123456789', 'hex'); const cipher = createCipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); const plaintext = 'Hello world'; cipher.setAAD(aad, { plaintextLength: Buffer.byteLength(plaintext), }); const ciphertext = cipher.update(plaintext, 'utf8'); cipher.final(); const tag = cipher.getAuthTag(); // Now transmit { ciphertext, nonce, tag }. const decipher = createDecipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); decipher.setAuthTag(tag); decipher.setAAD(aad, { plaintextLength: ciphertext.length, }); const receivedPlaintext = decipher.update(ciphertext, null, 'utf8'); try { decipher.final(); } catch (err) { throw new Error('Authentication failed!', { cause: err }); } console.log(receivedPlaintext); ``` ```cjs const { Buffer } = require('node:buffer'); const { createCipheriv, createDecipheriv, randomBytes, } = require('node:crypto'); const key = 'keykeykeykeykeykeykeykey'; const nonce = randomBytes(12); const aad = Buffer.from('0123456789', 'hex'); const cipher = createCipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); const plaintext = 'Hello world'; cipher.setAAD(aad, { plaintextLength: Buffer.byteLength(plaintext), }); const ciphertext = cipher.update(plaintext, 'utf8'); cipher.final(); const tag = cipher.getAuthTag(); // Now transmit { ciphertext, nonce, tag }. const decipher = createDecipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); decipher.setAuthTag(tag); decipher.setAAD(aad, { plaintextLength: ciphertext.length, }); const receivedPlaintext = decipher.update(ciphertext, null, 'utf8'); try { decipher.final(); } catch (err) { throw new Error('Authentication failed!', { cause: err }); } console.log(receivedPlaintext); ``` ### FIPS mode When using OpenSSL 3, Node.js supports FIPS 140-2 when used with an appropriate OpenSSL 3 provider, such as the [FIPS provider from OpenSSL 3][] which can be installed by following the instructions in [OpenSSL's FIPS README file][]. For FIPS support in Node.js you will need: * A correctly installed OpenSSL 3 FIPS provider. * An OpenSSL 3 [FIPS module configuration file][]. * An OpenSSL 3 configuration file that references the FIPS module configuration file. Node.js will need to be configured with an OpenSSL configuration file that points to the FIPS provider. An example configuration file looks like this: ```text nodejs_conf = nodejs_init .include /<absolute path>/fipsmodule.cnf [nodejs_init] providers = provider_sect [provider_sect] default = default_sect # The fips section name should match the section name inside the # included fipsmodule.cnf. fips = fips_sect [default_sect] activate = 1 ``` where `fipsmodule.cnf` is the FIPS module configuration file generated from the FIPS provider installation step: ```bash openssl fipsinstall ``` Set the `OPENSSL_CONF` environment variable to point to your configuration file and `OPENSSL_MODULES` to the location of the FIPS provider dynamic library. e.g. ```bash export OPENSSL_CONF=/<path to configuration file>/nodejs.cnf export OPENSSL_MODULES=/<path to openssl lib>/ossl-modules ``` FIPS mode can then be enabled in Node.js either by: * Starting Node.js with `--enable-fips` or `--force-fips` command line flags. * Programmatically calling `crypto.setFips(true)`. Optionally FIPS mode can be enabled in Node.js via the OpenSSL configuration file. e.g. ```text nodejs_conf = nodejs_init .include /<absolute path>/fipsmodule.cnf [nodejs_init] providers = provider_sect alg_section = algorithm_sect [provider_sect] default = default_sect # The fips section name should match the section name inside the # included fipsmodule.cnf. fips = fips_sect [default_sect] activate = 1 [algorithm_sect] default_properties = fips=yes ``` ## Crypto constants The following constants exported by `crypto.constants` apply to various uses of the `node:crypto`, `node:tls`, and `node:https` modules and are generally specific to OpenSSL. ### OpenSSL options See the [list of SSL OP Flags][] for details. <table> <tr> <th>Constant</th> <th>Description</th> </tr> <tr> <td><code>SSL_OP_ALL</code></td> <td>Applies multiple bug workarounds within OpenSSL. See <a href="https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html">https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html</a> for detail.</td> </tr> <tr> <td><code>SSL_OP_ALLOW_NO_DHE_KEX</code></td> <td>Instructs OpenSSL to allow a non-[EC]DHE-based key exchange mode for TLS v1.3</td> </tr> <tr> <td><code>SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION</code></td> <td>Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See <a href="https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html">https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html</a>.</td> </tr> <tr> <td><code>SSL_OP_CIPHER_SERVER_PREFERENCE</code></td> <td>Attempts to use the server's preferences instead of the client's when selecting a cipher. Behavior depends on protocol version. See <a href="https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html">https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html</a>.</td> </tr> <tr> <td><code>SSL_OP_CISCO_ANYCONNECT</code></td> <td>Instructs OpenSSL to use Cisco's version identifier of DTLS_BAD_VER.</td> </tr> <tr> <td><code>SSL_OP_COOKIE_EXCHANGE</code></td> <td>Instructs OpenSSL to turn on cookie exchange.</td> </tr> <tr> <td><code>SSL_OP_CRYPTOPRO_TLSEXT_BUG</code></td> <td>Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft.</td> </tr> <tr> <td><code>SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS</code></td> <td>Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d.</td> </tr> <tr> <td><code>SSL_OP_LEGACY_SERVER_CONNECT</code></td> <td>Allows initial connection to servers that do not support RI.</td> </tr> <tr> <td><code>SSL_OP_NO_COMPRESSION</code></td> <td>Instructs OpenSSL to disable support for SSL/TLS compression.</td> </tr> <tr> <td><code>SSL_OP_NO_ENCRYPT_THEN_MAC</code></td> <td>Instructs OpenSSL to disable encrypt-then-MAC.</td> </tr> <tr> <td><code>SSL_OP_NO_QUERY_MTU</code></td> <td></td> </tr> <tr> <td><code>SSL_OP_NO_RENEGOTIATION</code></td> <td>Instructs OpenSSL to disable renegotiation.</td> </tr> <tr> <td><code>SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION</code></td> <td>Instructs OpenSSL to always start a new session when performing renegotiation.</td> </tr> <tr> <td><code>SSL_OP_NO_SSLv2</code></td> <td>Instructs OpenSSL to turn off SSL v2</td> </tr> <tr> <td><code>SSL_OP_NO_SSLv3</code></td> <td>Instructs OpenSSL to turn off SSL v3</td> </tr> <tr> <td><code>SSL_OP_NO_TICKET</code></td> <td>Instructs OpenSSL to disable use of RFC4507bis tickets.</td> </tr> <tr> <td><code>SSL_OP_NO_TLSv1</code></td> <td>Instructs OpenSSL to turn off TLS v1</td> </tr> <tr> <td><code>SSL_OP_NO_TLSv1_1</code></td> <td>Instructs OpenSSL to turn off TLS v1.1</td> </tr> <tr> <td><code>SSL_OP_NO_TLSv1_2</code></td> <td>Instructs OpenSSL to turn off TLS v1.2</td> </tr> <tr> <td><code>SSL_OP_NO_TLSv1_3</code></td> <td>Instructs OpenSSL to turn off TLS v1.3</td> </tr> <tr> <td><code>SSL_OP_PRIORITIZE_CHACHA</code></td> <td>Instructs OpenSSL server to prioritize ChaCha20-Poly1305 when the client does. This option has no effect if <code>SSL_OP_CIPHER_SERVER_PREFERENCE</code> is not enabled.</td> </tr> <tr> <td><code>SSL_OP_TLS_ROLLBACK_BUG</code></td> <td>Instructs OpenSSL to disable version rollback attack detection.</td> </tr> </table> ### OpenSSL engine constants <table> <tr> <th>Constant</th> <th>Description</th> </tr> <tr> <td><code>ENGINE_METHOD_RSA</code></td> <td>Limit engine usage to RSA</td> </tr> <tr> <td><code>ENGINE_METHOD_DSA</code></td> <td>Limit engine usage to DSA</td> </tr> <tr> <td><code>ENGINE_METHOD_DH</code></td> <td>Limit engine usage to DH</td> </tr> <tr> <td><code>ENGINE_METHOD_RAND</code></td> <td>Limit engine usage to RAND</td> </tr> <tr> <td><code>ENGINE_METHOD_EC</code></td> <td>Limit engine usage to EC</td> </tr> <tr> <td><code>ENGINE_METHOD_CIPHERS</code></td> <td>Limit engine usage to CIPHERS</td> </tr> <tr> <td><code>ENGINE_METHOD_DIGESTS</code></td> <td>Limit engine usage to DIGESTS</td> </tr> <tr> <td><code>ENGINE_METHOD_PKEY_METHS</code></td> <td>Limit engine usage to PKEY_METHDS</td> </tr> <tr> <td><code>ENGINE_METHOD_PKEY_ASN1_METHS</code></td> <td>Limit engine usage to PKEY_ASN1_METHS</td> </tr> <tr> <td><code>ENGINE_METHOD_ALL</code></td> <td></td> </tr> <tr> <td><code>ENGINE_METHOD_NONE</code></td> <td></td> </tr> </table> ### Other OpenSSL constants <table> <tr> <th>Constant</th> <th>Description</th> </tr> <tr> <td><code>DH_CHECK_P_NOT_SAFE_PRIME</code></td> <td></td> </tr> <tr> <td><code>DH_CHECK_P_NOT_PRIME</code></td> <td></td> </tr> <tr> <td><code>DH_UNABLE_TO_CHECK_GENERATOR</code></td> <td></td> </tr> <tr> <td><code>DH_NOT_SUITABLE_GENERATOR</code></td> <td></td> </tr> <tr> <td><code>RSA_PKCS1_PADDING</code></td> <td></td> </tr> <tr> <td><code>RSA_SSLV23_PADDING</code></td> <td></td> </tr> <tr> <td><code>RSA_NO_PADDING</code></td> <td></td> </tr> <tr> <td><code>RSA_PKCS1_OAEP_PADDING</code></td> <td></td> </tr> <tr> <td><code>RSA_X931_PADDING</code></td> <td></td> </tr> <tr> <td><code>RSA_PKCS1_PSS_PADDING</code></td> <td></td> </tr> <tr> <td><code>RSA_PSS_SALTLEN_DIGEST</code></td> <td>Sets the salt length for <code>RSA_PKCS1_PSS_PADDING</code> to the digest size when signing or verifying.</td> </tr> <tr> <td><code>RSA_PSS_SALTLEN_MAX_SIGN</code></td> <td>Sets the salt length for <code>RSA_PKCS1_PSS_PADDING</code> to the maximum permissible value when signing data.</td> </tr> <tr> <td><code>RSA_PSS_SALTLEN_AUTO</code></td> <td>Causes the salt length for <code>RSA_PKCS1_PSS_PADDING</code> to be determined automatically when verifying a signature.</td> </tr> <tr> <td><code>POINT_CONVERSION_COMPRESSED</code></td> <td></td> </tr> <tr> <td><code>POINT_CONVERSION_UNCOMPRESSED</code></td> <td></td> </tr> <tr> <td><code>POINT_CONVERSION_HYBRID</code></td> <td></td> </tr> </table> ### Node.js crypto constants <table> <tr> <th>Constant</th> <th>Description</th> </tr> <tr> <td><code>defaultCoreCipherList</code></td> <td>Specifies the built-in default cipher list used by Node.js.</td> </tr> <tr> <td><code>defaultCipherList</code></td> <td>Specifies the active default cipher list used by the current Node.js process.</td> </tr> </table> [AEAD algorithms]: https://en.wikipedia.org/wiki/Authenticated_encryption [CCM mode]: #ccm-mode [CVE-2021-44532]: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44532 [Caveats]: #support-for-weak-or-compromised-algorithms [Crypto constants]: #crypto-constants [FIPS module configuration file]: https://www.openssl.org/docs/man3.0/man5/fips_config.html [FIPS provider from OpenSSL 3]: https://www.openssl.org/docs/man3.0/man7/crypto.html#FIPS-provider [HTML 5.2]: https://www.w3.org/TR/html52/changes.html#features-removed [JWK]: https://tools.ietf.org/html/rfc7517 [NIST SP 800-131A]: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf [NIST SP 800-132]: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf [NIST SP 800-38D]: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf [Nonce-Disrespecting Adversaries]: https://github.com/nonce-disrespect/nonce-disrespect [OpenSSL's FIPS README file]: https://github.com/openssl/openssl/blob/openssl-3.0/README-FIPS.md [OpenSSL's SPKAC implementation]: https://www.openssl.org/docs/man3.0/man1/openssl-spkac.html [RFC 1421]: https://www.rfc-editor.org/rfc/rfc1421.txt [RFC 2409]: https://www.rfc-editor.org/rfc/rfc2409.txt [RFC 2818]: https://www.rfc-editor.org/rfc/rfc2818.txt [RFC 3526]: https://www.rfc-editor.org/rfc/rfc3526.txt [RFC 3610]: https://www.rfc-editor.org/rfc/rfc3610.txt [RFC 4055]: https://www.rfc-editor.org/rfc/rfc4055.txt [RFC 4122]: https://www.rfc-editor.org/rfc/rfc4122.txt [RFC 5208]: https://www.rfc-editor.org/rfc/rfc5208.txt [RFC 5280]: https://www.rfc-editor.org/rfc/rfc5280.txt [Web Crypto API documentation]: webcrypto.md [`BN_is_prime_ex`]: https://www.openssl.org/docs/man1.1.1/man3/BN_is_prime_ex.html [`Buffer`]: buffer.md [`DH_generate_key()`]: https://www.openssl.org/docs/man3.0/man3/DH_generate_key.html [`DiffieHellmanGroup`]: #class-diffiehellmangroup [`EVP_BytesToKey`]: https://www.openssl.org/docs/man3.0/man3/EVP_BytesToKey.html [`KeyObject`]: #class-keyobject [`Sign`]: #class-sign [`String.prototype.normalize()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/normalize [`UV_THREADPOOL_SIZE`]: cli.md#uv_threadpool_sizesize [`Verify`]: #class-verify [`cipher.final()`]: #cipherfinaloutputencoding [`cipher.update()`]: #cipherupdatedata-inputencoding-outputencoding [`crypto.createCipher()`]: #cryptocreatecipheralgorithm-password-options [`crypto.createCipheriv()`]: #cryptocreatecipherivalgorithm-key-iv-options [`crypto.createDecipher()`]: #cryptocreatedecipheralgorithm-password-options [`crypto.createDecipheriv()`]: #cryptocreatedecipherivalgorithm-key-iv-options [`crypto.createDiffieHellman()`]: #cryptocreatediffiehellmanprime-primeencoding-generator-generatorencoding [`crypto.createECDH()`]: #cryptocreateecdhcurvename [`crypto.createHash()`]: #cryptocreatehashalgorithm-options [`crypto.createHmac()`]: #cryptocreatehmacalgorithm-key-options [`crypto.createPrivateKey()`]: #cryptocreateprivatekeykey [`crypto.createPublicKey()`]: #cryptocreatepublickeykey [`crypto.createSecretKey()`]: #cryptocreatesecretkeykey-encoding [`crypto.createSign()`]: #cryptocreatesignalgorithm-options [`crypto.createVerify()`]: #cryptocreateverifyalgorithm-options [`crypto.generateKey()`]: #cryptogeneratekeytype-options-callback [`crypto.getCurves()`]: #cryptogetcurves [`crypto.getDiffieHellman()`]: #cryptogetdiffiehellmangroupname [`crypto.getHashes()`]: #cryptogethashes [`crypto.privateDecrypt()`]: #cryptoprivatedecryptprivatekey-buffer [`crypto.privateEncrypt()`]: #cryptoprivateencryptprivatekey-buffer [`crypto.publicDecrypt()`]: #cryptopublicdecryptkey-buffer [`crypto.publicEncrypt()`]: #cryptopublicencryptkey-buffer [`crypto.randomBytes()`]: #cryptorandombytessize-callback [`crypto.randomFill()`]: #cryptorandomfillbuffer-offset-size-callback [`crypto.scrypt()`]: #cryptoscryptpassword-salt-keylen-options-callback [`crypto.webcrypto.getRandomValues()`]: webcrypto.md#cryptogetrandomvaluestypedarray [`crypto.webcrypto.subtle`]: webcrypto.md#class-subtlecrypto [`decipher.final()`]: #decipherfinaloutputencoding [`decipher.update()`]: #decipherupdatedata-inputencoding-outputencoding [`diffieHellman.generateKeys()`]: #diffiehellmangeneratekeysencoding [`diffieHellman.setPublicKey()`]: #diffiehellmansetpublickeypublickey-encoding [`ecdh.generateKeys()`]: #ecdhgeneratekeysencoding-format [`ecdh.setPrivateKey()`]: #ecdhsetprivatekeyprivatekey-encoding [`hash.digest()`]: #hashdigestencoding [`hash.update()`]: #hashupdatedata-inputencoding [`hmac.digest()`]: #hmacdigestencoding [`hmac.update()`]: #hmacupdatedata-inputencoding [`import()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import [`keyObject.export()`]: #keyobjectexportoptions [`postMessage()`]: worker_threads.md#portpostmessagevalue-transferlist [`sign.sign()`]: #signsignprivatekey-outputencoding [`sign.update()`]: #signupdatedata-inputencoding [`stream.Writable` options]: stream.md#new-streamwritableoptions [`stream.transform` options]: stream.md#new-streamtransformoptions [`util.promisify()`]: util.md#utilpromisifyoriginal [`verify.update()`]: #verifyupdatedata-inputencoding [`verify.verify()`]: #verifyverifyobject-signature-signatureencoding [`x509.fingerprint256`]: #x509fingerprint256 [caveats when using strings as inputs to cryptographic APIs]: #using-strings-as-inputs-to-cryptographic-apis [certificate object]: tls.md#certificate-object [encoding]: buffer.md#buffers-and-character-encodings [initialization vector]: https://en.wikipedia.org/wiki/Initialization_vector [legacy provider]: cli.md#--openssl-legacy-provider [list of SSL OP Flags]: https://wiki.openssl.org/index.php/List_of_SSL_OP_Flags#Table_of_Options [modulo bias]: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#Modulo_bias [safe integers]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isSafeInteger [scrypt]: https://en.wikipedia.org/wiki/Scrypt [stream]: stream.md [stream-writable-write]: stream.md#writablewritechunk-encoding-callback