Server IP : 85.214.239.14 / Your IP : 3.145.170.189 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/self/root/usr/include/postgresql/9.6/server/nodes/ |
Upload File : |
/*------------------------------------------------------------------------- * * pg_list.h * interface for PostgreSQL generic linked list package * * This package implements singly-linked homogeneous lists. * * It is important to have constant-time length, append, and prepend * operations. To achieve this, we deal with two distinct data * structures: * * 1. A set of "list cells": each cell contains a data field and * a link to the next cell in the list or NULL. * 2. A single structure containing metadata about the list: the * type of the list, pointers to the head and tail cells, and * the length of the list. * * We support three types of lists: * * T_List: lists of pointers * (in practice usually pointers to Nodes, but not always; * declared as "void *" to minimize casting annoyances) * T_IntList: lists of integers * T_OidList: lists of Oids * * (At the moment, ints and Oids are the same size, but they may not * always be so; try to be careful to maintain the distinction.) * * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/nodes/pg_list.h * *------------------------------------------------------------------------- */ #ifndef PG_LIST_H #define PG_LIST_H #include "nodes/nodes.h" typedef struct ListCell ListCell; typedef struct List { NodeTag type; /* T_List, T_IntList, or T_OidList */ int length; ListCell *head; ListCell *tail; } List; struct ListCell { union { void *ptr_value; int int_value; Oid oid_value; } data; ListCell *next; }; /* * The *only* valid representation of an empty list is NIL; in other * words, a non-NIL list is guaranteed to have length >= 1 and * head/tail != NULL */ #define NIL ((List *) NULL) /* * These routines are used frequently. However, we can't implement * them as macros, since we want to avoid double-evaluation of macro * arguments. */ static inline ListCell * list_head(const List *l) { return l ? l->head : NULL; } static inline ListCell * list_tail(List *l) { return l ? l->tail : NULL; } static inline int list_length(const List *l) { return l ? l->length : 0; } /* * NB: There is an unfortunate legacy from a previous incarnation of * the List API: the macro lfirst() was used to mean "the data in this * cons cell". To avoid changing every usage of lfirst(), that meaning * has been kept. As a result, lfirst() takes a ListCell and returns * the data it contains; to get the data in the first cell of a * List, use linitial(). Worse, lsecond() is more closely related to * linitial() than lfirst(): given a List, lsecond() returns the data * in the second cons cell. */ #define lnext(lc) ((lc)->next) #define lfirst(lc) ((lc)->data.ptr_value) #define lfirst_int(lc) ((lc)->data.int_value) #define lfirst_oid(lc) ((lc)->data.oid_value) #define lfirst_node(type,lc) castNode(type, lfirst(lc)) #define linitial(l) lfirst(list_head(l)) #define linitial_int(l) lfirst_int(list_head(l)) #define linitial_oid(l) lfirst_oid(list_head(l)) #define linitial_node(type,l) castNode(type, linitial(l)) #define lsecond(l) lfirst(lnext(list_head(l))) #define lsecond_int(l) lfirst_int(lnext(list_head(l))) #define lsecond_oid(l) lfirst_oid(lnext(list_head(l))) #define lsecond_node(type,l) castNode(type, lsecond(l)) #define lthird(l) lfirst(lnext(lnext(list_head(l)))) #define lthird_int(l) lfirst_int(lnext(lnext(list_head(l)))) #define lthird_oid(l) lfirst_oid(lnext(lnext(list_head(l)))) #define lthird_node(type,l) castNode(type, lthird(l)) #define lfourth(l) lfirst(lnext(lnext(lnext(list_head(l))))) #define lfourth_int(l) lfirst_int(lnext(lnext(lnext(list_head(l))))) #define lfourth_oid(l) lfirst_oid(lnext(lnext(lnext(list_head(l))))) #define lfourth_node(type,l) castNode(type, lfourth(l)) #define llast(l) lfirst(list_tail(l)) #define llast_int(l) lfirst_int(list_tail(l)) #define llast_oid(l) lfirst_oid(list_tail(l)) #define llast_node(type,l) castNode(type, llast(l)) /* * Convenience macros for building fixed-length lists */ #define list_make1(x1) lcons(x1, NIL) #define list_make2(x1,x2) lcons(x1, list_make1(x2)) #define list_make3(x1,x2,x3) lcons(x1, list_make2(x2, x3)) #define list_make4(x1,x2,x3,x4) lcons(x1, list_make3(x2, x3, x4)) #define list_make5(x1,x2,x3,x4,x5) lcons(x1, list_make4(x2, x3, x4, x5)) #define list_make1_int(x1) lcons_int(x1, NIL) #define list_make2_int(x1,x2) lcons_int(x1, list_make1_int(x2)) #define list_make3_int(x1,x2,x3) lcons_int(x1, list_make2_int(x2, x3)) #define list_make4_int(x1,x2,x3,x4) lcons_int(x1, list_make3_int(x2, x3, x4)) #define list_make5_int(x1,x2,x3,x4,x5) lcons_int(x1, list_make4_int(x2, x3, x4, x5)) #define list_make1_oid(x1) lcons_oid(x1, NIL) #define list_make2_oid(x1,x2) lcons_oid(x1, list_make1_oid(x2)) #define list_make3_oid(x1,x2,x3) lcons_oid(x1, list_make2_oid(x2, x3)) #define list_make4_oid(x1,x2,x3,x4) lcons_oid(x1, list_make3_oid(x2, x3, x4)) #define list_make5_oid(x1,x2,x3,x4,x5) lcons_oid(x1, list_make4_oid(x2, x3, x4, x5)) /* * foreach - * a convenience macro which loops through the list */ #define foreach(cell, l) \ for ((cell) = list_head(l); (cell) != NULL; (cell) = lnext(cell)) /* * for_each_cell - * a convenience macro which loops through a list starting from a * specified cell */ #define for_each_cell(cell, initcell) \ for ((cell) = (initcell); (cell) != NULL; (cell) = lnext(cell)) /* * forboth - * a convenience macro for advancing through two linked lists * simultaneously. This macro loops through both lists at the same * time, stopping when either list runs out of elements. Depending * on the requirements of the call site, it may also be wise to * assert that the lengths of the two lists are equal. */ #define forboth(cell1, list1, cell2, list2) \ for ((cell1) = list_head(list1), (cell2) = list_head(list2); \ (cell1) != NULL && (cell2) != NULL; \ (cell1) = lnext(cell1), (cell2) = lnext(cell2)) /* * forthree - * the same for three lists */ #define forthree(cell1, list1, cell2, list2, cell3, list3) \ for ((cell1) = list_head(list1), (cell2) = list_head(list2), (cell3) = list_head(list3); \ (cell1) != NULL && (cell2) != NULL && (cell3) != NULL; \ (cell1) = lnext(cell1), (cell2) = lnext(cell2), (cell3) = lnext(cell3)) extern List *lappend(List *list, void *datum); extern List *lappend_int(List *list, int datum); extern List *lappend_oid(List *list, Oid datum); extern ListCell *lappend_cell(List *list, ListCell *prev, void *datum); extern ListCell *lappend_cell_int(List *list, ListCell *prev, int datum); extern ListCell *lappend_cell_oid(List *list, ListCell *prev, Oid datum); extern List *lcons(void *datum, List *list); extern List *lcons_int(int datum, List *list); extern List *lcons_oid(Oid datum, List *list); extern List *list_concat(List *list1, List *list2); extern List *list_truncate(List *list, int new_size); extern ListCell *list_nth_cell(const List *list, int n); extern void *list_nth(const List *list, int n); extern int list_nth_int(const List *list, int n); extern Oid list_nth_oid(const List *list, int n); #define list_nth_node(type,list,n) castNode(type, list_nth(list, n)) extern bool list_member(const List *list, const void *datum); extern bool list_member_ptr(const List *list, const void *datum); extern bool list_member_int(const List *list, int datum); extern bool list_member_oid(const List *list, Oid datum); extern List *list_delete(List *list, void *datum); extern List *list_delete_ptr(List *list, void *datum); extern List *list_delete_int(List *list, int datum); extern List *list_delete_oid(List *list, Oid datum); extern List *list_delete_first(List *list); extern List *list_delete_cell(List *list, ListCell *cell, ListCell *prev); extern List *list_union(const List *list1, const List *list2); extern List *list_union_ptr(const List *list1, const List *list2); extern List *list_union_int(const List *list1, const List *list2); extern List *list_union_oid(const List *list1, const List *list2); extern List *list_intersection(const List *list1, const List *list2); extern List *list_intersection_int(const List *list1, const List *list2); /* currently, there's no need for list_intersection_ptr etc */ extern List *list_difference(const List *list1, const List *list2); extern List *list_difference_ptr(const List *list1, const List *list2); extern List *list_difference_int(const List *list1, const List *list2); extern List *list_difference_oid(const List *list1, const List *list2); extern List *list_append_unique(List *list, void *datum); extern List *list_append_unique_ptr(List *list, void *datum); extern List *list_append_unique_int(List *list, int datum); extern List *list_append_unique_oid(List *list, Oid datum); extern List *list_concat_unique(List *list1, List *list2); extern List *list_concat_unique_ptr(List *list1, List *list2); extern List *list_concat_unique_int(List *list1, List *list2); extern List *list_concat_unique_oid(List *list1, List *list2); extern void list_free(List *list); extern void list_free_deep(List *list); extern List *list_copy(const List *list); extern List *list_copy_tail(const List *list, int nskip); /* * To ease migration to the new list API, a set of compatibility * macros are provided that reduce the impact of the list API changes * as far as possible. Until client code has been rewritten to use the * new list API, the ENABLE_LIST_COMPAT symbol can be defined before * including pg_list.h */ #ifdef ENABLE_LIST_COMPAT #define lfirsti(lc) lfirst_int(lc) #define lfirsto(lc) lfirst_oid(lc) #define makeList1(x1) list_make1(x1) #define makeList2(x1, x2) list_make2(x1, x2) #define makeList3(x1, x2, x3) list_make3(x1, x2, x3) #define makeList4(x1, x2, x3, x4) list_make4(x1, x2, x3, x4) #define makeListi1(x1) list_make1_int(x1) #define makeListi2(x1, x2) list_make2_int(x1, x2) #define makeListo1(x1) list_make1_oid(x1) #define makeListo2(x1, x2) list_make2_oid(x1, x2) #define lconsi(datum, list) lcons_int(datum, list) #define lconso(datum, list) lcons_oid(datum, list) #define lappendi(list, datum) lappend_int(list, datum) #define lappendo(list, datum) lappend_oid(list, datum) #define nconc(l1, l2) list_concat(l1, l2) #define nth(n, list) list_nth(list, n) #define member(datum, list) list_member(list, datum) #define ptrMember(datum, list) list_member_ptr(list, datum) #define intMember(datum, list) list_member_int(list, datum) #define oidMember(datum, list) list_member_oid(list, datum) /* * Note that the old lremove() determined equality via pointer * comparison, whereas the new list_delete() uses equal(); in order to * keep the same behavior, we therefore need to map lremove() calls to * list_delete_ptr() rather than list_delete() */ #define lremove(elem, list) list_delete_ptr(list, elem) #define LispRemove(elem, list) list_delete(list, elem) #define lremovei(elem, list) list_delete_int(list, elem) #define lremoveo(elem, list) list_delete_oid(list, elem) #define ltruncate(n, list) list_truncate(list, n) #define set_union(l1, l2) list_union(l1, l2) #define set_uniono(l1, l2) list_union_oid(l1, l2) #define set_ptrUnion(l1, l2) list_union_ptr(l1, l2) #define set_difference(l1, l2) list_difference(l1, l2) #define set_differenceo(l1, l2) list_difference_oid(l1, l2) #define set_ptrDifference(l1, l2) list_difference_ptr(l1, l2) #define equali(l1, l2) equal(l1, l2) #define equalo(l1, l2) equal(l1, l2) #define freeList(list) list_free(list) #define listCopy(list) list_copy(list) extern int length(List *list); #endif /* ENABLE_LIST_COMPAT */ #endif /* PG_LIST_H */