Server IP : 85.214.239.14 / Your IP : 3.16.81.8 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/3/cwd/proc/3/task/3/cwd/proc/3/task/3/root/lib/gcc/x86_64-linux-gnu/12/include/ |
Upload File : |
/* Copyright (C) 2002-2022 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ /* Implemented from the specification included in the Intel C++ Compiler User Guide and Reference, version 9.0. */ #ifndef _MMINTRIN_H_INCLUDED #define _MMINTRIN_H_INCLUDED #if defined __x86_64__ && !defined __SSE__ || !defined __MMX__ #pragma GCC push_options #ifdef __MMX_WITH_SSE__ #pragma GCC target("sse2") #elif defined __x86_64__ #pragma GCC target("sse,mmx") #else #pragma GCC target("mmx") #endif #define __DISABLE_MMX__ #endif /* __MMX__ */ /* The Intel API is flexible enough that we must allow aliasing with other vector types, and their scalar components. */ typedef int __m64 __attribute__ ((__vector_size__ (8), __may_alias__)); typedef int __m32 __attribute__ ((__vector_size__ (4), __may_alias__)); typedef short __m16 __attribute__ ((__vector_size__ (2), __may_alias__)); /* Unaligned version of the same type */ typedef int __m64_u __attribute__ ((__vector_size__ (8), __may_alias__, __aligned__ (1))); typedef int __m32_u __attribute__ ((__vector_size__ (4), \ __may_alias__, __aligned__ (1))); typedef short __m16_u __attribute__ ((__vector_size__ (2), \ __may_alias__, __aligned__ (1))); /* Internal data types for implementing the intrinsics. */ typedef int __v2si __attribute__ ((__vector_size__ (8))); typedef short __v4hi __attribute__ ((__vector_size__ (8))); typedef char __v8qi __attribute__ ((__vector_size__ (8))); typedef long long __v1di __attribute__ ((__vector_size__ (8))); typedef float __v2sf __attribute__ ((__vector_size__ (8))); /* Empty the multimedia state. */ extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_empty (void) { __builtin_ia32_emms (); } extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_empty (void) { _mm_empty (); } /* Convert I to a __m64 object. The integer is zero-extended to 64-bits. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtsi32_si64 (int __i) { return (__m64) __builtin_ia32_vec_init_v2si (__i, 0); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_from_int (int __i) { return _mm_cvtsi32_si64 (__i); } #ifdef __x86_64__ /* Convert I to a __m64 object. */ /* Intel intrinsic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_from_int64 (long long __i) { return (__m64) __i; } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtsi64_m64 (long long __i) { return (__m64) __i; } /* Microsoft intrinsic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtsi64x_si64 (long long __i) { return (__m64) __i; } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set_pi64x (long long __i) { return (__m64) __i; } #endif /* Convert the lower 32 bits of the __m64 object into an integer. */ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtsi64_si32 (__m64 __i) { return __builtin_ia32_vec_ext_v2si ((__v2si)__i, 0); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_to_int (__m64 __i) { return _mm_cvtsi64_si32 (__i); } #ifdef __x86_64__ /* Convert the __m64 object to a 64bit integer. */ /* Intel intrinsic. */ extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_to_int64 (__m64 __i) { return (long long)__i; } extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtm64_si64 (__m64 __i) { return (long long)__i; } /* Microsoft intrinsic. */ extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtsi64_si64x (__m64 __i) { return (long long)__i; } #endif /* Pack the four 16-bit values from M1 into the lower four 8-bit values of the result, and the four 16-bit values from M2 into the upper four 8-bit values of the result, all with signed saturation. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_packs_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_packsswb ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_packsswb (__m64 __m1, __m64 __m2) { return _mm_packs_pi16 (__m1, __m2); } /* Pack the two 32-bit values from M1 in to the lower two 16-bit values of the result, and the two 32-bit values from M2 into the upper two 16-bit values of the result, all with signed saturation. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_packs_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_packssdw ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_packssdw (__m64 __m1, __m64 __m2) { return _mm_packs_pi32 (__m1, __m2); } /* Pack the four 16-bit values from M1 into the lower four 8-bit values of the result, and the four 16-bit values from M2 into the upper four 8-bit values of the result, all with unsigned saturation. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_packs_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_packuswb ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_packuswb (__m64 __m1, __m64 __m2) { return _mm_packs_pu16 (__m1, __m2); } /* Interleave the four 8-bit values from the high half of M1 with the four 8-bit values from the high half of M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_unpackhi_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_punpckhbw ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_punpckhbw (__m64 __m1, __m64 __m2) { return _mm_unpackhi_pi8 (__m1, __m2); } /* Interleave the two 16-bit values from the high half of M1 with the two 16-bit values from the high half of M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_unpackhi_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_punpckhwd ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_punpckhwd (__m64 __m1, __m64 __m2) { return _mm_unpackhi_pi16 (__m1, __m2); } /* Interleave the 32-bit value from the high half of M1 with the 32-bit value from the high half of M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_unpackhi_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_punpckhdq ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_punpckhdq (__m64 __m1, __m64 __m2) { return _mm_unpackhi_pi32 (__m1, __m2); } /* Interleave the four 8-bit values from the low half of M1 with the four 8-bit values from the low half of M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_unpacklo_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_punpcklbw ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_punpcklbw (__m64 __m1, __m64 __m2) { return _mm_unpacklo_pi8 (__m1, __m2); } /* Interleave the two 16-bit values from the low half of M1 with the two 16-bit values from the low half of M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_unpacklo_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_punpcklwd ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_punpcklwd (__m64 __m1, __m64 __m2) { return _mm_unpacklo_pi16 (__m1, __m2); } /* Interleave the 32-bit value from the low half of M1 with the 32-bit value from the low half of M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_unpacklo_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_punpckldq ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_punpckldq (__m64 __m1, __m64 __m2) { return _mm_unpacklo_pi32 (__m1, __m2); } /* Add the 8-bit values in M1 to the 8-bit values in M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_add_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddb (__m64 __m1, __m64 __m2) { return _mm_add_pi8 (__m1, __m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_add_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddw (__m64 __m1, __m64 __m2) { return _mm_add_pi16 (__m1, __m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_add_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddd ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddd (__m64 __m1, __m64 __m2) { return _mm_add_pi32 (__m1, __m2); } /* Add the 64-bit values in M1 to the 64-bit values in M2. */ #ifndef __SSE2__ #pragma GCC push_options #ifdef __MMX_WITH_SSE__ #pragma GCC target("sse2") #else #pragma GCC target("sse2,mmx") #endif #define __DISABLE_SSE2__ #endif /* __SSE2__ */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_add_si64 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddq ((__v1di)__m1, (__v1di)__m2); } #ifdef __DISABLE_SSE2__ #undef __DISABLE_SSE2__ #pragma GCC pop_options #endif /* __DISABLE_SSE2__ */ /* Add the 8-bit values in M1 to the 8-bit values in M2 using signed saturated arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_adds_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddsb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddsb (__m64 __m1, __m64 __m2) { return _mm_adds_pi8 (__m1, __m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2 using signed saturated arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_adds_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddsw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddsw (__m64 __m1, __m64 __m2) { return _mm_adds_pi16 (__m1, __m2); } /* Add the 8-bit values in M1 to the 8-bit values in M2 using unsigned saturated arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_adds_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddusb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddusb (__m64 __m1, __m64 __m2) { return _mm_adds_pu8 (__m1, __m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2 using unsigned saturated arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_adds_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_paddusw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_paddusw (__m64 __m1, __m64 __m2) { return _mm_adds_pu16 (__m1, __m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sub_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubb (__m64 __m1, __m64 __m2) { return _mm_sub_pi8 (__m1, __m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sub_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubw (__m64 __m1, __m64 __m2) { return _mm_sub_pi16 (__m1, __m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sub_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubd ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubd (__m64 __m1, __m64 __m2) { return _mm_sub_pi32 (__m1, __m2); } /* Add the 64-bit values in M1 to the 64-bit values in M2. */ #ifndef __SSE2__ #pragma GCC push_options #ifdef __MMX_WITH_SSE__ #pragma GCC target("sse2") #else #pragma GCC target("sse2,mmx") #endif #define __DISABLE_SSE2__ #endif /* __SSE2__ */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sub_si64 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubq ((__v1di)__m1, (__v1di)__m2); } #ifdef __DISABLE_SSE2__ #undef __DISABLE_SSE2__ #pragma GCC pop_options #endif /* __DISABLE_SSE2__ */ /* Subtract the 8-bit values in M2 from the 8-bit values in M1 using signed saturating arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_subs_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubsb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubsb (__m64 __m1, __m64 __m2) { return _mm_subs_pi8 (__m1, __m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1 using signed saturating arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_subs_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubsw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubsw (__m64 __m1, __m64 __m2) { return _mm_subs_pi16 (__m1, __m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1 using unsigned saturating arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_subs_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubusb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubusb (__m64 __m1, __m64 __m2) { return _mm_subs_pu8 (__m1, __m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1 using unsigned saturating arithmetic. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_subs_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_psubusw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psubusw (__m64 __m1, __m64 __m2) { return _mm_subs_pu16 (__m1, __m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing four 32-bit intermediate results, which are then summed by pairs to produce two 32-bit results. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_madd_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pmaddwd ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pmaddwd (__m64 __m1, __m64 __m2) { return _mm_madd_pi16 (__m1, __m2); } /* Multiply four signed 16-bit values in M1 by four signed 16-bit values in M2 and produce the high 16 bits of the 32-bit results. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_mulhi_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pmulhw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pmulhw (__m64 __m1, __m64 __m2) { return _mm_mulhi_pi16 (__m1, __m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 and produce the low 16 bits of the results. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_mullo_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pmullw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pmullw (__m64 __m1, __m64 __m2) { return _mm_mullo_pi16 (__m1, __m2); } /* Shift four 16-bit values in M left by COUNT. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sll_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psllw ((__v4hi)__m, (__v4hi)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psllw (__m64 __m, __m64 __count) { return _mm_sll_pi16 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_slli_pi16 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psllwi ((__v4hi)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psllwi (__m64 __m, int __count) { return _mm_slli_pi16 (__m, __count); } /* Shift two 32-bit values in M left by COUNT. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sll_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_pslld ((__v2si)__m, (__v2si)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pslld (__m64 __m, __m64 __count) { return _mm_sll_pi32 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_slli_pi32 (__m64 __m, int __count) { return (__m64) __builtin_ia32_pslldi ((__v2si)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pslldi (__m64 __m, int __count) { return _mm_slli_pi32 (__m, __count); } /* Shift the 64-bit value in M left by COUNT. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sll_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psllq ((__v1di)__m, (__v1di)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psllq (__m64 __m, __m64 __count) { return _mm_sll_si64 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_slli_si64 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psllqi ((__v1di)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psllqi (__m64 __m, int __count) { return _mm_slli_si64 (__m, __count); } /* Shift four 16-bit values in M right by COUNT; shift in the sign bit. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sra_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psraw ((__v4hi)__m, (__v4hi)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psraw (__m64 __m, __m64 __count) { return _mm_sra_pi16 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srai_pi16 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psrawi ((__v4hi)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrawi (__m64 __m, int __count) { return _mm_srai_pi16 (__m, __count); } /* Shift two 32-bit values in M right by COUNT; shift in the sign bit. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_sra_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psrad ((__v2si)__m, (__v2si)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrad (__m64 __m, __m64 __count) { return _mm_sra_pi32 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srai_pi32 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psradi ((__v2si)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psradi (__m64 __m, int __count) { return _mm_srai_pi32 (__m, __count); } /* Shift four 16-bit values in M right by COUNT; shift in zeros. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srl_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psrlw ((__v4hi)__m, (__v4hi)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrlw (__m64 __m, __m64 __count) { return _mm_srl_pi16 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srli_pi16 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psrlwi ((__v4hi)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrlwi (__m64 __m, int __count) { return _mm_srli_pi16 (__m, __count); } /* Shift two 32-bit values in M right by COUNT; shift in zeros. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srl_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psrld ((__v2si)__m, (__v2si)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrld (__m64 __m, __m64 __count) { return _mm_srl_pi32 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srli_pi32 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psrldi ((__v2si)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrldi (__m64 __m, int __count) { return _mm_srli_pi32 (__m, __count); } /* Shift the 64-bit value in M left by COUNT; shift in zeros. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srl_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_ia32_psrlq ((__v1di)__m, (__v1di)__count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrlq (__m64 __m, __m64 __count) { return _mm_srl_si64 (__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_srli_si64 (__m64 __m, int __count) { return (__m64) __builtin_ia32_psrlqi ((__v1di)__m, __count); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_psrlqi (__m64 __m, int __count) { return _mm_srli_si64 (__m, __count); } /* Bit-wise AND the 64-bit values in M1 and M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_and_si64 (__m64 __m1, __m64 __m2) { return __builtin_ia32_pand (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pand (__m64 __m1, __m64 __m2) { return _mm_and_si64 (__m1, __m2); } /* Bit-wise complement the 64-bit value in M1 and bit-wise AND it with the 64-bit value in M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_andnot_si64 (__m64 __m1, __m64 __m2) { return __builtin_ia32_pandn (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pandn (__m64 __m1, __m64 __m2) { return _mm_andnot_si64 (__m1, __m2); } /* Bit-wise inclusive OR the 64-bit values in M1 and M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_or_si64 (__m64 __m1, __m64 __m2) { return __builtin_ia32_por (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_por (__m64 __m1, __m64 __m2) { return _mm_or_si64 (__m1, __m2); } /* Bit-wise exclusive OR the 64-bit values in M1 and M2. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_xor_si64 (__m64 __m1, __m64 __m2) { return __builtin_ia32_pxor (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pxor (__m64 __m1, __m64 __m2) { return _mm_xor_si64 (__m1, __m2); } /* Compare eight 8-bit values. The result of the comparison is 0xFF if the test is true and zero if false. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpeq_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pcmpeqb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pcmpeqb (__m64 __m1, __m64 __m2) { return _mm_cmpeq_pi8 (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpgt_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pcmpgtb ((__v8qi)__m1, (__v8qi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pcmpgtb (__m64 __m1, __m64 __m2) { return _mm_cmpgt_pi8 (__m1, __m2); } /* Compare four 16-bit values. The result of the comparison is 0xFFFF if the test is true and zero if false. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpeq_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pcmpeqw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pcmpeqw (__m64 __m1, __m64 __m2) { return _mm_cmpeq_pi16 (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpgt_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pcmpgtw ((__v4hi)__m1, (__v4hi)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pcmpgtw (__m64 __m1, __m64 __m2) { return _mm_cmpgt_pi16 (__m1, __m2); } /* Compare two 32-bit values. The result of the comparison is 0xFFFFFFFF if the test is true and zero if false. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpeq_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pcmpeqd ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pcmpeqd (__m64 __m1, __m64 __m2) { return _mm_cmpeq_pi32 (__m1, __m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpgt_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_ia32_pcmpgtd ((__v2si)__m1, (__v2si)__m2); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _m_pcmpgtd (__m64 __m1, __m64 __m2) { return _mm_cmpgt_pi32 (__m1, __m2); } /* Creates a 64-bit zero. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_setzero_si64 (void) { return (__m64)0LL; } /* Creates a vector of two 32-bit values; I0 is least significant. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set_pi32 (int __i1, int __i0) { return (__m64) __builtin_ia32_vec_init_v2si (__i0, __i1); } /* Creates a vector of four 16-bit values; W0 is least significant. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set_pi16 (short __w3, short __w2, short __w1, short __w0) { return (__m64) __builtin_ia32_vec_init_v4hi (__w0, __w1, __w2, __w3); } /* Creates a vector of eight 8-bit values; B0 is least significant. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set_pi8 (char __b7, char __b6, char __b5, char __b4, char __b3, char __b2, char __b1, char __b0) { return (__m64) __builtin_ia32_vec_init_v8qi (__b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7); } /* Similar, but with the arguments in reverse order. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_setr_pi32 (int __i0, int __i1) { return _mm_set_pi32 (__i1, __i0); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_setr_pi16 (short __w0, short __w1, short __w2, short __w3) { return _mm_set_pi16 (__w3, __w2, __w1, __w0); } extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_setr_pi8 (char __b0, char __b1, char __b2, char __b3, char __b4, char __b5, char __b6, char __b7) { return _mm_set_pi8 (__b7, __b6, __b5, __b4, __b3, __b2, __b1, __b0); } /* Creates a vector of two 32-bit values, both elements containing I. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set1_pi32 (int __i) { return _mm_set_pi32 (__i, __i); } /* Creates a vector of four 16-bit values, all elements containing W. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set1_pi16 (short __w) { return _mm_set_pi16 (__w, __w, __w, __w); } /* Creates a vector of eight 8-bit values, all elements containing B. */ extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_set1_pi8 (char __b) { return _mm_set_pi8 (__b, __b, __b, __b, __b, __b, __b, __b); } #ifdef __DISABLE_MMX__ #undef __DISABLE_MMX__ #pragma GCC pop_options #endif /* __DISABLE_MMX__ */ #endif /* _MMINTRIN_H_INCLUDED */