Server IP : 85.214.239.14 / Your IP : 18.188.178.1 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/3/cwd/proc/3/root/srv/modoboa/env/lib64/python3.5/site-packages/PIL/ |
Upload File : |
# # The Python Imaging Library. # $Id$ # # global image statistics # # History: # 1996-04-05 fl Created # 1997-05-21 fl Added mask; added rms, var, stddev attributes # 1997-08-05 fl Added median # 1998-07-05 hk Fixed integer overflow error # # Notes: # This class shows how to implement delayed evaluation of attributes. # To get a certain value, simply access the corresponding attribute. # The __getattr__ dispatcher takes care of the rest. # # Copyright (c) Secret Labs AB 1997. # Copyright (c) Fredrik Lundh 1996-97. # # See the README file for information on usage and redistribution. # import functools import math import operator class Stat: def __init__(self, image_or_list, mask=None): try: if mask: self.h = image_or_list.histogram(mask) else: self.h = image_or_list.histogram() except AttributeError: self.h = image_or_list # assume it to be a histogram list if not isinstance(self.h, list): raise TypeError("first argument must be image or list") self.bands = list(range(len(self.h) // 256)) def __getattr__(self, id): """Calculate missing attribute""" if id[:4] == "_get": raise AttributeError(id) # calculate missing attribute v = getattr(self, "_get" + id)() setattr(self, id, v) return v def _getextrema(self): """Get min/max values for each band in the image""" def minmax(histogram): n = 255 x = 0 for i in range(256): if histogram[i]: n = min(n, i) x = max(x, i) return n, x # returns (255, 0) if there's no data in the histogram v = [] for i in range(0, len(self.h), 256): v.append(minmax(self.h[i:])) return v def _getcount(self): """Get total number of pixels in each layer""" v = [] for i in range(0, len(self.h), 256): v.append(functools.reduce(operator.add, self.h[i : i + 256])) return v def _getsum(self): """Get sum of all pixels in each layer""" v = [] for i in range(0, len(self.h), 256): layerSum = 0.0 for j in range(256): layerSum += j * self.h[i + j] v.append(layerSum) return v def _getsum2(self): """Get squared sum of all pixels in each layer""" v = [] for i in range(0, len(self.h), 256): sum2 = 0.0 for j in range(256): sum2 += (j ** 2) * float(self.h[i + j]) v.append(sum2) return v def _getmean(self): """Get average pixel level for each layer""" v = [] for i in self.bands: v.append(self.sum[i] / self.count[i]) return v def _getmedian(self): """Get median pixel level for each layer""" v = [] for i in self.bands: s = 0 half = self.count[i] // 2 b = i * 256 for j in range(256): s = s + self.h[b + j] if s > half: break v.append(j) return v def _getrms(self): """Get RMS for each layer""" v = [] for i in self.bands: v.append(math.sqrt(self.sum2[i] / self.count[i])) return v def _getvar(self): """Get variance for each layer""" v = [] for i in self.bands: n = self.count[i] v.append((self.sum2[i] - (self.sum[i] ** 2.0) / n) / n) return v def _getstddev(self): """Get standard deviation for each layer""" v = [] for i in self.bands: v.append(math.sqrt(self.var[i])) return v Global = Stat # compatibility