Server IP : 85.214.239.14 / Your IP : 18.219.127.59 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /proc/3/cwd/proc/3/root/srv/modoboa/env/lib64/python3.5/site-packages/PIL/ |
Upload File : |
# # The Python Imaging Library. # $Id$ # # standard channel operations # # History: # 1996-03-24 fl Created # 1996-08-13 fl Added logical operations (for "1" images) # 2000-10-12 fl Added offset method (from Image.py) # # Copyright (c) 1997-2000 by Secret Labs AB # Copyright (c) 1996-2000 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from . import Image def constant(image, value): """Fill a channel with a given grey level. :rtype: :py:class:`~PIL.Image.Image` """ return Image.new("L", image.size, value) def duplicate(image): """Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`. :rtype: :py:class:`~PIL.Image.Image` """ return image.copy() def invert(image): """ Invert an image (channel). .. code-block:: python out = MAX - image :rtype: :py:class:`~PIL.Image.Image` """ image.load() return image._new(image.im.chop_invert()) def lighter(image1, image2): """ Compares the two images, pixel by pixel, and returns a new image containing the lighter values. At least one of the images must have mode "1". .. code-block:: python out = max(image1, image2) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_lighter(image2.im)) def darker(image1, image2): """ Compares the two images, pixel by pixel, and returns a new image containing the darker values. At least one of the images must have mode "1". .. code-block:: python out = min(image1, image2) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_darker(image2.im)) def difference(image1, image2): """ Returns the absolute value of the pixel-by-pixel difference between the two images. At least one of the images must have mode "1". .. code-block:: python out = abs(image1 - image2) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_difference(image2.im)) def multiply(image1, image2): """ Superimposes two images on top of each other. If you multiply an image with a solid black image, the result is black. If you multiply with a solid white image, the image is unaffected. At least one of the images must have mode "1". .. code-block:: python out = image1 * image2 / MAX :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_multiply(image2.im)) def screen(image1, image2): """ Superimposes two inverted images on top of each other. At least one of the images must have mode "1". .. code-block:: python out = MAX - ((MAX - image1) * (MAX - image2) / MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_screen(image2.im)) def soft_light(image1, image2): """ Superimposes two images on top of each other using the Soft Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_soft_light(image2.im)) def hard_light(image1, image2): """ Superimposes two images on top of each other using the Hard Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_hard_light(image2.im)) def overlay(image1, image2): """ Superimposes two images on top of each other using the Overlay algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_overlay(image2.im)) def add(image1, image2, scale=1.0, offset=0): """ Adds two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0. At least one of the images must have mode "1". .. code-block:: python out = ((image1 + image2) / scale + offset) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_add(image2.im, scale, offset)) def subtract(image1, image2, scale=1.0, offset=0): """ Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0. At least one of the images must have mode "1". .. code-block:: python out = ((image1 - image2) / scale + offset) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_subtract(image2.im, scale, offset)) def add_modulo(image1, image2): """Add two images, without clipping the result. At least one of the images must have mode "1". .. code-block:: python out = ((image1 + image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_add_modulo(image2.im)) def subtract_modulo(image1, image2): """Subtract two images, without clipping the result. At least one of the images must have mode "1". .. code-block:: python out = ((image1 - image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_subtract_modulo(image2.im)) def logical_and(image1, image2): """Logical AND between two images. At least one of the images must have mode "1". .. code-block:: python out = ((image1 and image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_and(image2.im)) def logical_or(image1, image2): """Logical OR between two images. At least one of the images must have mode "1". .. code-block:: python out = ((image1 or image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_or(image2.im)) def logical_xor(image1, image2): """Logical XOR between two images. At least one of the images must have mode "1". .. code-block:: python out = ((bool(image1) != bool(image2)) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_xor(image2.im)) def blend(image1, image2, alpha): """Blend images using constant transparency weight. Alias for :py:meth:`PIL.Image.Image.blend`. :rtype: :py:class:`~PIL.Image.Image` """ return Image.blend(image1, image2, alpha) def composite(image1, image2, mask): """Create composite using transparency mask. Alias for :py:meth:`PIL.Image.Image.composite`. :rtype: :py:class:`~PIL.Image.Image` """ return Image.composite(image1, image2, mask) def offset(image, xoffset, yoffset=None): """Returns a copy of the image where data has been offset by the given distances. Data wraps around the edges. If **yoffset** is omitted, it is assumed to be equal to **xoffset**. :param xoffset: The horizontal distance. :param yoffset: The vertical distance. If omitted, both distances are set to the same value. :rtype: :py:class:`~PIL.Image.Image` """ if yoffset is None: yoffset = xoffset image.load() return image._new(image.im.offset(xoffset, yoffset))