Dre4m Shell
Server IP : 85.214.239.14  /  Your IP : 3.149.28.7
Web Server : Apache/2.4.62 (Debian)
System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.18
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
MySQL : OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : OFF
Directory :  /proc/3/cwd/proc/3/cwd/usr/share/doc/nodejs/api/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ HOME SHELL ]     

Current File : /proc/3/cwd/proc/3/cwd/usr/share/doc/nodejs/api/stream.md
# Stream

<!--introduced_in=v0.10.0-->

> Stability: 2 - Stable

<!-- source_link=lib/stream.js -->

A stream is an abstract interface for working with streaming data in Node.js.
The `node:stream` module provides an API for implementing the stream interface.

There are many stream objects provided by Node.js. For instance, a
[request to an HTTP server][http-incoming-message] and [`process.stdout`][]
are both stream instances.

Streams can be readable, writable, or both. All streams are instances of
[`EventEmitter`][].

To access the `node:stream` module:

```js
const stream = require('node:stream');
```

The `node:stream` module is useful for creating new types of stream instances.
It is usually not necessary to use the `node:stream` module to consume streams.

## Organization of this document

This document contains two primary sections and a third section for notes. The
first section explains how to use existing streams within an application. The
second section explains how to create new types of streams.

## Types of streams

There are four fundamental stream types within Node.js:

* [`Writable`][]: streams to which data can be written (for example,
  [`fs.createWriteStream()`][]).
* [`Readable`][]: streams from which data can be read (for example,
  [`fs.createReadStream()`][]).
* [`Duplex`][]: streams that are both `Readable` and `Writable` (for example,
  [`net.Socket`][]).
* [`Transform`][]: `Duplex` streams that can modify or transform the data as it
  is written and read (for example, [`zlib.createDeflate()`][]).

Additionally, this module includes the utility functions
[`stream.duplexPair()`][],
[`stream.pipeline()`][],
[`stream.finished()`][]
[`stream.Readable.from()`][], and
[`stream.addAbortSignal()`][].

### Streams Promises API

<!-- YAML
added: v15.0.0
-->

The `stream/promises` API provides an alternative set of asynchronous utility
functions for streams that return `Promise` objects rather than using
callbacks. The API is accessible via `require('node:stream/promises')`
or `require('node:stream').promises`.

### `stream.pipeline(source[, ...transforms], destination[, options])`

### `stream.pipeline(streams[, options])`

<!-- YAML
added: v15.0.0
changes:
  - version:
      - v18.0.0
      - v17.2.0
      - v16.14.0
    pr-url: https://github.com/nodejs/node/pull/40886
    description: Add the `end` option, which can be set to `false` to prevent
                 automatically closing the destination stream when the source
                 ends.
-->

* `streams` {Stream\[]|Iterable\[]|AsyncIterable\[]|Function\[]}
* `source` {Stream|Iterable|AsyncIterable|Function}
  * Returns: {Promise|AsyncIterable}
* `...transforms` {Stream|Function}
  * `source` {AsyncIterable}
  * Returns: {Promise|AsyncIterable}
* `destination` {Stream|Function}
  * `source` {AsyncIterable}
  * Returns: {Promise|AsyncIterable}
* `options` {Object} Pipeline options
  * `signal` {AbortSignal}
  * `end` {boolean} End the destination stream when the source stream ends.
    Transform streams are always ended, even if this value is `false`.
    **Default:** `true`.
* Returns: {Promise} Fulfills when the pipeline is complete.

```cjs
const { pipeline } = require('node:stream/promises');
const fs = require('node:fs');
const zlib = require('node:zlib');

async function run() {
  await pipeline(
    fs.createReadStream('archive.tar'),
    zlib.createGzip(),
    fs.createWriteStream('archive.tar.gz'),
  );
  console.log('Pipeline succeeded.');
}

run().catch(console.error);
```

```mjs
import { pipeline } from 'node:stream/promises';
import { createReadStream, createWriteStream } from 'node:fs';
import { createGzip } from 'node:zlib';

await pipeline(
  createReadStream('archive.tar'),
  createGzip(),
  createWriteStream('archive.tar.gz'),
);
console.log('Pipeline succeeded.');
```

To use an `AbortSignal`, pass it inside an options object, as the last argument.
When the signal is aborted, `destroy` will be called on the underlying pipeline,
with an `AbortError`.

```cjs
const { pipeline } = require('node:stream/promises');
const fs = require('node:fs');
const zlib = require('node:zlib');

async function run() {
  const ac = new AbortController();
  const signal = ac.signal;

  setImmediate(() => ac.abort());
  await pipeline(
    fs.createReadStream('archive.tar'),
    zlib.createGzip(),
    fs.createWriteStream('archive.tar.gz'),
    { signal },
  );
}

run().catch(console.error); // AbortError
```

```mjs
import { pipeline } from 'node:stream/promises';
import { createReadStream, createWriteStream } from 'node:fs';
import { createGzip } from 'node:zlib';

const ac = new AbortController();
const { signal } = ac;
setImmediate(() => ac.abort());
try {
  await pipeline(
    createReadStream('archive.tar'),
    createGzip(),
    createWriteStream('archive.tar.gz'),
    { signal },
  );
} catch (err) {
  console.error(err); // AbortError
}
```

The `pipeline` API also supports async generators:

```cjs
const { pipeline } = require('node:stream/promises');
const fs = require('node:fs');

async function run() {
  await pipeline(
    fs.createReadStream('lowercase.txt'),
    async function* (source, { signal }) {
      source.setEncoding('utf8');  // Work with strings rather than `Buffer`s.
      for await (const chunk of source) {
        yield await processChunk(chunk, { signal });
      }
    },
    fs.createWriteStream('uppercase.txt'),
  );
  console.log('Pipeline succeeded.');
}

run().catch(console.error);
```

```mjs
import { pipeline } from 'node:stream/promises';
import { createReadStream, createWriteStream } from 'node:fs';

await pipeline(
  createReadStream('lowercase.txt'),
  async function* (source, { signal }) {
    source.setEncoding('utf8');  // Work with strings rather than `Buffer`s.
    for await (const chunk of source) {
      yield await processChunk(chunk, { signal });
    }
  },
  createWriteStream('uppercase.txt'),
);
console.log('Pipeline succeeded.');
```

Remember to handle the `signal` argument passed into the async generator.
Especially in the case where the async generator is the source for the
pipeline (i.e. first argument) or the pipeline will never complete.

```cjs
const { pipeline } = require('node:stream/promises');
const fs = require('node:fs');

async function run() {
  await pipeline(
    async function* ({ signal }) {
      await someLongRunningfn({ signal });
      yield 'asd';
    },
    fs.createWriteStream('uppercase.txt'),
  );
  console.log('Pipeline succeeded.');
}

run().catch(console.error);
```

```mjs
import { pipeline } from 'node:stream/promises';
import fs from 'node:fs';
await pipeline(
  async function* ({ signal }) {
    await someLongRunningfn({ signal });
    yield 'asd';
  },
  fs.createWriteStream('uppercase.txt'),
);
console.log('Pipeline succeeded.');
```

The `pipeline` API provides [callback version][stream-pipeline]:

### `stream.finished(stream[, options])`

<!-- YAML
added: v15.0.0
changes:
  - version:
    - v19.5.0
    - v18.14.0
    pr-url: https://github.com/nodejs/node/pull/46205
    description: Added support for `ReadableStream` and `WritableStream`.
-->

* `stream` {Stream|ReadableStream|WritableStream} A readable and/or writable
  stream/webstream.
* `options` {Object}
  * `error` {boolean|undefined}
  * `readable` {boolean|undefined}
  * `writable` {boolean|undefined}
  * `signal`: {AbortSignal|undefined}
* Returns: {Promise} Fulfills when the stream is no
  longer readable or writable.

```cjs
const { finished } = require('node:stream/promises');
const fs = require('node:fs');

const rs = fs.createReadStream('archive.tar');

async function run() {
  await finished(rs);
  console.log('Stream is done reading.');
}

run().catch(console.error);
rs.resume(); // Drain the stream.
```

```mjs
import { finished } from 'node:stream/promises';
import { createReadStream } from 'node:fs';

const rs = createReadStream('archive.tar');

async function run() {
  await finished(rs);
  console.log('Stream is done reading.');
}

run().catch(console.error);
rs.resume(); // Drain the stream.
```

The `finished` API also provides a [callback version][stream-finished].

### Object mode

All streams created by Node.js APIs operate exclusively on strings, {Buffer},
{TypedArray} and {DataView} objects:

* `Strings` and `Buffers` are the most common types used with streams.
* `TypedArray` and `DataView` lets you handle binary data with types like
  `Int32Array` or `Uint8Array`. When you write a TypedArray or DataView to a
  stream, Node.js processes
  the raw bytes.

It is possible, however, for stream
implementations to work with other types of JavaScript values (with the
exception of `null`, which serves a special purpose within streams).
Such streams are considered to operate in "object mode".

Stream instances are switched into object mode using the `objectMode` option
when the stream is created. Attempting to switch an existing stream into
object mode is not safe.

### Buffering

<!--type=misc-->

Both [`Writable`][] and [`Readable`][] streams will store data in an internal
buffer.

The amount of data potentially buffered depends on the `highWaterMark` option
passed into the stream's constructor. For normal streams, the `highWaterMark`
option specifies a [total number of bytes][hwm-gotcha]. For streams operating
in object mode, the `highWaterMark` specifies a total number of objects. For
streams operating on (but not decoding) strings, the `highWaterMark` specifies
a total number of UTF-16 code units.

Data is buffered in `Readable` streams when the implementation calls
[`stream.push(chunk)`][stream-push]. If the consumer of the Stream does not
call [`stream.read()`][stream-read], the data will sit in the internal
queue until it is consumed.

Once the total size of the internal read buffer reaches the threshold specified
by `highWaterMark`, the stream will temporarily stop reading data from the
underlying resource until the data currently buffered can be consumed (that is,
the stream will stop calling the internal [`readable._read()`][] method that is
used to fill the read buffer).

Data is buffered in `Writable` streams when the
[`writable.write(chunk)`][stream-write] method is called repeatedly. While the
total size of the internal write buffer is below the threshold set by
`highWaterMark`, calls to `writable.write()` will return `true`. Once
the size of the internal buffer reaches or exceeds the `highWaterMark`, `false`
will be returned.

A key goal of the `stream` API, particularly the [`stream.pipe()`][] method,
is to limit the buffering of data to acceptable levels such that sources and
destinations of differing speeds will not overwhelm the available memory.

The `highWaterMark` option is a threshold, not a limit: it dictates the amount
of data that a stream buffers before it stops asking for more data. It does not
enforce a strict memory limitation in general. Specific stream implementations
may choose to enforce stricter limits but doing so is optional.

Because [`Duplex`][] and [`Transform`][] streams are both `Readable` and
`Writable`, each maintains _two_ separate internal buffers used for reading and
writing, allowing each side to operate independently of the other while
maintaining an appropriate and efficient flow of data. For example,
[`net.Socket`][] instances are [`Duplex`][] streams whose `Readable` side allows
consumption of data received _from_ the socket and whose `Writable` side allows
writing data _to_ the socket. Because data may be written to the socket at a
faster or slower rate than data is received, each side should
operate (and buffer) independently of the other.

The mechanics of the internal buffering are an internal implementation detail
and may be changed at any time. However, for certain advanced implementations,
the internal buffers can be retrieved using `writable.writableBuffer` or
`readable.readableBuffer`. Use of these undocumented properties is discouraged.

## API for stream consumers

<!--type=misc-->

Almost all Node.js applications, no matter how simple, use streams in some
manner. The following is an example of using streams in a Node.js application
that implements an HTTP server:

```js
const http = require('node:http');

const server = http.createServer((req, res) => {
  // `req` is an http.IncomingMessage, which is a readable stream.
  // `res` is an http.ServerResponse, which is a writable stream.

  let body = '';
  // Get the data as utf8 strings.
  // If an encoding is not set, Buffer objects will be received.
  req.setEncoding('utf8');

  // Readable streams emit 'data' events once a listener is added.
  req.on('data', (chunk) => {
    body += chunk;
  });

  // The 'end' event indicates that the entire body has been received.
  req.on('end', () => {
    try {
      const data = JSON.parse(body);
      // Write back something interesting to the user:
      res.write(typeof data);
      res.end();
    } catch (er) {
      // uh oh! bad json!
      res.statusCode = 400;
      return res.end(`error: ${er.message}`);
    }
  });
});

server.listen(1337);

// $ curl localhost:1337 -d "{}"
// object
// $ curl localhost:1337 -d "\"foo\""
// string
// $ curl localhost:1337 -d "not json"
// error: Unexpected token 'o', "not json" is not valid JSON
```

[`Writable`][] streams (such as `res` in the example) expose methods such as
`write()` and `end()` that are used to write data onto the stream.

[`Readable`][] streams use the [`EventEmitter`][] API for notifying application
code when data is available to be read off the stream. That available data can
be read from the stream in multiple ways.

Both [`Writable`][] and [`Readable`][] streams use the [`EventEmitter`][] API in
various ways to communicate the current state of the stream.

[`Duplex`][] and [`Transform`][] streams are both [`Writable`][] and
[`Readable`][].

Applications that are either writing data to or consuming data from a stream
are not required to implement the stream interfaces directly and will generally
have no reason to call `require('node:stream')`.

Developers wishing to implement new types of streams should refer to the
section [API for stream implementers][].

### Writable streams

Writable streams are an abstraction for a _destination_ to which data is
written.

Examples of [`Writable`][] streams include:

* [HTTP requests, on the client][]
* [HTTP responses, on the server][]
* [fs write streams][]
* [zlib streams][zlib]
* [crypto streams][crypto]
* [TCP sockets][]
* [child process stdin][]
* [`process.stdout`][], [`process.stderr`][]

Some of these examples are actually [`Duplex`][] streams that implement the
[`Writable`][] interface.

All [`Writable`][] streams implement the interface defined by the
`stream.Writable` class.

While specific instances of [`Writable`][] streams may differ in various ways,
all `Writable` streams follow the same fundamental usage pattern as illustrated
in the example below:

```js
const myStream = getWritableStreamSomehow();
myStream.write('some data');
myStream.write('some more data');
myStream.end('done writing data');
```

#### Class: `stream.Writable`

<!-- YAML
added: v0.9.4
-->

<!--type=class-->

##### Event: `'close'`

<!-- YAML
added: v0.9.4
changes:
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/18438
    description: Add `emitClose` option to specify if `'close'` is emitted on
                 destroy.
-->

The `'close'` event is emitted when the stream and any of its underlying
resources (a file descriptor, for example) have been closed. The event indicates
that no more events will be emitted, and no further computation will occur.

A [`Writable`][] stream will always emit the `'close'` event if it is
created with the `emitClose` option.

##### Event: `'drain'`

<!-- YAML
added: v0.9.4
-->

If a call to [`stream.write(chunk)`][stream-write] returns `false`, the
`'drain'` event will be emitted when it is appropriate to resume writing data
to the stream.

```js
// Write the data to the supplied writable stream one million times.
// Be attentive to back-pressure.
function writeOneMillionTimes(writer, data, encoding, callback) {
  let i = 1000000;
  write();
  function write() {
    let ok = true;
    do {
      i--;
      if (i === 0) {
        // Last time!
        writer.write(data, encoding, callback);
      } else {
        // See if we should continue, or wait.
        // Don't pass the callback, because we're not done yet.
        ok = writer.write(data, encoding);
      }
    } while (i > 0 && ok);
    if (i > 0) {
      // Had to stop early!
      // Write some more once it drains.
      writer.once('drain', write);
    }
  }
}
```

##### Event: `'error'`

<!-- YAML
added: v0.9.4
-->

* {Error}

The `'error'` event is emitted if an error occurred while writing or piping
data. The listener callback is passed a single `Error` argument when called.

The stream is closed when the `'error'` event is emitted unless the
[`autoDestroy`][writable-new] option was set to `false` when creating the
stream.

After `'error'`, no further events other than `'close'` _should_ be emitted
(including `'error'` events).

##### Event: `'finish'`

<!-- YAML
added: v0.9.4
-->

The `'finish'` event is emitted after the [`stream.end()`][stream-end] method
has been called, and all data has been flushed to the underlying system.

```js
const writer = getWritableStreamSomehow();
for (let i = 0; i < 100; i++) {
  writer.write(`hello, #${i}!\n`);
}
writer.on('finish', () => {
  console.log('All writes are now complete.');
});
writer.end('This is the end\n');
```

##### Event: `'pipe'`

<!-- YAML
added: v0.9.4
-->

* `src` {stream.Readable} source stream that is piping to this writable

The `'pipe'` event is emitted when the [`stream.pipe()`][] method is called on
a readable stream, adding this writable to its set of destinations.

```js
const writer = getWritableStreamSomehow();
const reader = getReadableStreamSomehow();
writer.on('pipe', (src) => {
  console.log('Something is piping into the writer.');
  assert.equal(src, reader);
});
reader.pipe(writer);
```

##### Event: `'unpipe'`

<!-- YAML
added: v0.9.4
-->

* `src` {stream.Readable} The source stream that
  [unpiped][`stream.unpipe()`] this writable

The `'unpipe'` event is emitted when the [`stream.unpipe()`][] method is called
on a [`Readable`][] stream, removing this [`Writable`][] from its set of
destinations.

This is also emitted in case this [`Writable`][] stream emits an error when a
[`Readable`][] stream pipes into it.

```js
const writer = getWritableStreamSomehow();
const reader = getReadableStreamSomehow();
writer.on('unpipe', (src) => {
  console.log('Something has stopped piping into the writer.');
  assert.equal(src, reader);
});
reader.pipe(writer);
reader.unpipe(writer);
```

##### `writable.cork()`

<!-- YAML
added: v0.11.2
-->

The `writable.cork()` method forces all written data to be buffered in memory.
The buffered data will be flushed when either the [`stream.uncork()`][] or
[`stream.end()`][stream-end] methods are called.

The primary intent of `writable.cork()` is to accommodate a situation in which
several small chunks are written to the stream in rapid succession. Instead of
immediately forwarding them to the underlying destination, `writable.cork()`
buffers all the chunks until `writable.uncork()` is called, which will pass them
all to `writable._writev()`, if present. This prevents a head-of-line blocking
situation where data is being buffered while waiting for the first small chunk
to be processed. However, use of `writable.cork()` without implementing
`writable._writev()` may have an adverse effect on throughput.

See also: [`writable.uncork()`][], [`writable._writev()`][stream-_writev].

##### `writable.destroy([error])`

<!-- YAML
added: v8.0.0
changes:
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/29197
    description: Work as a no-op on a stream that has already been destroyed.
-->

* `error` {Error} Optional, an error to emit with `'error'` event.
* Returns: {this}

Destroy the stream. Optionally emit an `'error'` event, and emit a `'close'`
event (unless `emitClose` is set to `false`). After this call, the writable
stream has ended and subsequent calls to `write()` or `end()` will result in
an `ERR_STREAM_DESTROYED` error.
This is a destructive and immediate way to destroy a stream. Previous calls to
`write()` may not have drained, and may trigger an `ERR_STREAM_DESTROYED` error.
Use `end()` instead of destroy if data should flush before close, or wait for
the `'drain'` event before destroying the stream.

```cjs
const { Writable } = require('node:stream');

const myStream = new Writable();

const fooErr = new Error('foo error');
myStream.destroy(fooErr);
myStream.on('error', (fooErr) => console.error(fooErr.message)); // foo error
```

```cjs
const { Writable } = require('node:stream');

const myStream = new Writable();

myStream.destroy();
myStream.on('error', function wontHappen() {});
```

```cjs
const { Writable } = require('node:stream');

const myStream = new Writable();
myStream.destroy();

myStream.write('foo', (error) => console.error(error.code));
// ERR_STREAM_DESTROYED
```

Once `destroy()` has been called any further calls will be a no-op and no
further errors except from `_destroy()` may be emitted as `'error'`.

Implementors should not override this method,
but instead implement [`writable._destroy()`][writable-_destroy].

##### `writable.closed`

<!-- YAML
added: v18.0.0
-->

* {boolean}

Is `true` after `'close'` has been emitted.

##### `writable.destroyed`

<!-- YAML
added: v8.0.0
-->

* {boolean}

Is `true` after [`writable.destroy()`][writable-destroy] has been called.

```cjs
const { Writable } = require('node:stream');

const myStream = new Writable();

console.log(myStream.destroyed); // false
myStream.destroy();
console.log(myStream.destroyed); // true
```

##### `writable.end([chunk[, encoding]][, callback])`

<!-- YAML
added: v0.9.4
changes:
  - version: v20.13.0
    pr-url: https://github.com/nodejs/node/pull/51866
    description: The `chunk` argument can now be a `TypedArray` or `DataView` instance.
  - version: v15.0.0
    pr-url: https://github.com/nodejs/node/pull/34101
    description: The `callback` is invoked before 'finish' or on error.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/29747
    description: The `callback` is invoked if 'finish' or 'error' is emitted.
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/18780
    description: This method now returns a reference to `writable`.
  - version: v8.0.0
    pr-url: https://github.com/nodejs/node/pull/11608
    description: The `chunk` argument can now be a `Uint8Array` instance.
-->

* `chunk` {string|Buffer|TypedArray|DataView|any} Optional data to write. For
  streams not operating in object mode, `chunk` must be a {string}, {Buffer},
  {TypedArray} or {DataView}. For object mode streams, `chunk` may be any
  JavaScript value other than `null`.
* `encoding` {string} The encoding if `chunk` is a string
* `callback` {Function} Callback for when the stream is finished.
* Returns: {this}

Calling the `writable.end()` method signals that no more data will be written
to the [`Writable`][]. The optional `chunk` and `encoding` arguments allow one
final additional chunk of data to be written immediately before closing the
stream.

Calling the [`stream.write()`][stream-write] method after calling
[`stream.end()`][stream-end] will raise an error.

```js
// Write 'hello, ' and then end with 'world!'.
const fs = require('node:fs');
const file = fs.createWriteStream('example.txt');
file.write('hello, ');
file.end('world!');
// Writing more now is not allowed!
```

##### `writable.setDefaultEncoding(encoding)`

<!-- YAML
added: v0.11.15
changes:
  - version: v6.1.0
    pr-url: https://github.com/nodejs/node/pull/5040
    description: This method now returns a reference to `writable`.
-->

* `encoding` {string} The new default encoding
* Returns: {this}

The `writable.setDefaultEncoding()` method sets the default `encoding` for a
[`Writable`][] stream.

##### `writable.uncork()`

<!-- YAML
added: v0.11.2
-->

The `writable.uncork()` method flushes all data buffered since
[`stream.cork()`][] was called.

When using [`writable.cork()`][] and `writable.uncork()` to manage the buffering
of writes to a stream, defer calls to `writable.uncork()` using
`process.nextTick()`. Doing so allows batching of all
`writable.write()` calls that occur within a given Node.js event loop phase.

```js
stream.cork();
stream.write('some ');
stream.write('data ');
process.nextTick(() => stream.uncork());
```

If the [`writable.cork()`][] method is called multiple times on a stream, the
same number of calls to `writable.uncork()` must be called to flush the buffered
data.

```js
stream.cork();
stream.write('some ');
stream.cork();
stream.write('data ');
process.nextTick(() => {
  stream.uncork();
  // The data will not be flushed until uncork() is called a second time.
  stream.uncork();
});
```

See also: [`writable.cork()`][].

##### `writable.writable`

<!-- YAML
added: v11.4.0
-->

* {boolean}

Is `true` if it is safe to call [`writable.write()`][stream-write], which means
the stream has not been destroyed, errored, or ended.

##### `writable.writableAborted`

<!-- YAML
added:
  - v18.0.0
  - v16.17.0
-->

> Stability: 1 - Experimental

* {boolean}

Returns whether the stream was destroyed or errored before emitting `'finish'`.

##### `writable.writableEnded`

<!-- YAML
added: v12.9.0
-->

* {boolean}

Is `true` after [`writable.end()`][] has been called. This property
does not indicate whether the data has been flushed, for this use
[`writable.writableFinished`][] instead.

##### `writable.writableCorked`

<!-- YAML
added:
 - v13.2.0
 - v12.16.0
-->

* {integer}

Number of times [`writable.uncork()`][stream-uncork] needs to be
called in order to fully uncork the stream.

##### `writable.errored`

<!-- YAML
added:
  v18.0.0
-->

* {Error}

Returns error if the stream has been destroyed with an error.

##### `writable.writableFinished`

<!-- YAML
added: v12.6.0
-->

* {boolean}

Is set to `true` immediately before the [`'finish'`][] event is emitted.

##### `writable.writableHighWaterMark`

<!-- YAML
added: v9.3.0
-->

* {number}

Return the value of `highWaterMark` passed when creating this `Writable`.

##### `writable.writableLength`

<!-- YAML
added: v9.4.0
-->

* {number}

This property contains the number of bytes (or objects) in the queue
ready to be written. The value provides introspection data regarding
the status of the `highWaterMark`.

##### `writable.writableNeedDrain`

<!-- YAML
added:
  - v15.2.0
  - v14.17.0
-->

* {boolean}

Is `true` if the stream's buffer has been full and stream will emit `'drain'`.

##### `writable.writableObjectMode`

<!-- YAML
added: v12.3.0
-->

* {boolean}

Getter for the property `objectMode` of a given `Writable` stream.

##### `writable[Symbol.asyncDispose]()`

<!-- YAML
added: v20.16.0
-->

> Stability: 1 - Experimental

Calls [`writable.destroy()`][writable-destroy] with an `AbortError` and returns
a promise that fulfills when the stream is finished.

##### `writable.write(chunk[, encoding][, callback])`

<!-- YAML
added: v0.9.4
changes:
  - version: v20.13.0
    pr-url: https://github.com/nodejs/node/pull/51866
    description: The `chunk` argument can now be a `TypedArray` or `DataView` instance.
  - version: v8.0.0
    pr-url: https://github.com/nodejs/node/pull/11608
    description: The `chunk` argument can now be a `Uint8Array` instance.
  - version: v6.0.0
    pr-url: https://github.com/nodejs/node/pull/6170
    description: Passing `null` as the `chunk` parameter will always be
                 considered invalid now, even in object mode.
-->

* `chunk` {string|Buffer|TypedArray|DataView|any} Optional data to write. For
  streams not operating in object mode, `chunk` must be a {string}, {Buffer},
  {TypedArray} or {DataView}. For object mode streams, `chunk` may be any
  JavaScript value other than `null`.
* `encoding` {string|null} The encoding, if `chunk` is a string. **Default:** `'utf8'`
* `callback` {Function} Callback for when this chunk of data is flushed.
* Returns: {boolean} `false` if the stream wishes for the calling code to
  wait for the `'drain'` event to be emitted before continuing to write
  additional data; otherwise `true`.

The `writable.write()` method writes some data to the stream, and calls the
supplied `callback` once the data has been fully handled. If an error
occurs, the `callback` will be called with the error as its
first argument. The `callback` is called asynchronously and before `'error'` is
emitted.

The return value is `true` if the internal buffer is less than the
`highWaterMark` configured when the stream was created after admitting `chunk`.
If `false` is returned, further attempts to write data to the stream should
stop until the [`'drain'`][] event is emitted.

While a stream is not draining, calls to `write()` will buffer `chunk`, and
return false. Once all currently buffered chunks are drained (accepted for
delivery by the operating system), the `'drain'` event will be emitted.
Once `write()` returns false, do not write more chunks
until the `'drain'` event is emitted. While calling `write()` on a stream that
is not draining is allowed, Node.js will buffer all written chunks until
maximum memory usage occurs, at which point it will abort unconditionally.
Even before it aborts, high memory usage will cause poor garbage collector
performance and high RSS (which is not typically released back to the system,
even after the memory is no longer required). Since TCP sockets may never
drain if the remote peer does not read the data, writing a socket that is
not draining may lead to a remotely exploitable vulnerability.

Writing data while the stream is not draining is particularly
problematic for a [`Transform`][], because the `Transform` streams are paused
by default until they are piped or a `'data'` or `'readable'` event handler
is added.

If the data to be written can be generated or fetched on demand, it is
recommended to encapsulate the logic into a [`Readable`][] and use
[`stream.pipe()`][]. However, if calling `write()` is preferred, it is
possible to respect backpressure and avoid memory issues using the
[`'drain'`][] event:

```js
function write(data, cb) {
  if (!stream.write(data)) {
    stream.once('drain', cb);
  } else {
    process.nextTick(cb);
  }
}

// Wait for cb to be called before doing any other write.
write('hello', () => {
  console.log('Write completed, do more writes now.');
});
```

A `Writable` stream in object mode will always ignore the `encoding` argument.

### Readable streams

Readable streams are an abstraction for a _source_ from which data is
consumed.

Examples of `Readable` streams include:

* [HTTP responses, on the client][http-incoming-message]
* [HTTP requests, on the server][http-incoming-message]
* [fs read streams][]
* [zlib streams][zlib]
* [crypto streams][crypto]
* [TCP sockets][]
* [child process stdout and stderr][]
* [`process.stdin`][]

All [`Readable`][] streams implement the interface defined by the
`stream.Readable` class.

#### Two reading modes

`Readable` streams effectively operate in one of two modes: flowing and
paused. These modes are separate from [object mode][object-mode].
A [`Readable`][] stream can be in object mode or not, regardless of whether
it is in flowing mode or paused mode.

* In flowing mode, data is read from the underlying system automatically
  and provided to an application as quickly as possible using events via the
  [`EventEmitter`][] interface.

* In paused mode, the [`stream.read()`][stream-read] method must be called
  explicitly to read chunks of data from the stream.

All [`Readable`][] streams begin in paused mode but can be switched to flowing
mode in one of the following ways:

* Adding a [`'data'`][] event handler.
* Calling the [`stream.resume()`][stream-resume] method.
* Calling the [`stream.pipe()`][] method to send the data to a [`Writable`][].

The `Readable` can switch back to paused mode using one of the following:

* If there are no pipe destinations, by calling the
  [`stream.pause()`][stream-pause] method.
* If there are pipe destinations, by removing all pipe destinations.
  Multiple pipe destinations may be removed by calling the
  [`stream.unpipe()`][] method.

The important concept to remember is that a `Readable` will not generate data
until a mechanism for either consuming or ignoring that data is provided. If
the consuming mechanism is disabled or taken away, the `Readable` will _attempt_
to stop generating the data.

For backward compatibility reasons, removing [`'data'`][] event handlers will
**not** automatically pause the stream. Also, if there are piped destinations,
then calling [`stream.pause()`][stream-pause] will not guarantee that the
stream will _remain_ paused once those destinations drain and ask for more data.

If a [`Readable`][] is switched into flowing mode and there are no consumers
available to handle the data, that data will be lost. This can occur, for
instance, when the `readable.resume()` method is called without a listener
attached to the `'data'` event, or when a `'data'` event handler is removed
from the stream.

Adding a [`'readable'`][] event handler automatically makes the stream
stop flowing, and the data has to be consumed via
[`readable.read()`][stream-read]. If the [`'readable'`][] event handler is
removed, then the stream will start flowing again if there is a
[`'data'`][] event handler.

#### Three states

The "two modes" of operation for a `Readable` stream are a simplified
abstraction for the more complicated internal state management that is happening
within the `Readable` stream implementation.

Specifically, at any given point in time, every `Readable` is in one of three
possible states:

* `readable.readableFlowing === null`
* `readable.readableFlowing === false`
* `readable.readableFlowing === true`

When `readable.readableFlowing` is `null`, no mechanism for consuming the
stream's data is provided. Therefore, the stream will not generate data.
While in this state, attaching a listener for the `'data'` event, calling the
`readable.pipe()` method, or calling the `readable.resume()` method will switch
`readable.readableFlowing` to `true`, causing the `Readable` to begin actively
emitting events as data is generated.

Calling `readable.pause()`, `readable.unpipe()`, or receiving backpressure
will cause the `readable.readableFlowing` to be set as `false`,
temporarily halting the flowing of events but _not_ halting the generation of
data. While in this state, attaching a listener for the `'data'` event
will not switch `readable.readableFlowing` to `true`.

```js
const { PassThrough, Writable } = require('node:stream');
const pass = new PassThrough();
const writable = new Writable();

pass.pipe(writable);
pass.unpipe(writable);
// readableFlowing is now false.

pass.on('data', (chunk) => { console.log(chunk.toString()); });
// readableFlowing is still false.
pass.write('ok');  // Will not emit 'data'.
pass.resume();     // Must be called to make stream emit 'data'.
// readableFlowing is now true.
```

While `readable.readableFlowing` is `false`, data may be accumulating
within the stream's internal buffer.

#### Choose one API style

The `Readable` stream API evolved across multiple Node.js versions and provides
multiple methods of consuming stream data. In general, developers should choose
_one_ of the methods of consuming data and _should never_ use multiple methods
to consume data from a single stream. Specifically, using a combination
of `on('data')`, `on('readable')`, `pipe()`, or async iterators could
lead to unintuitive behavior.

#### Class: `stream.Readable`

<!-- YAML
added: v0.9.4
-->

<!--type=class-->

##### Event: `'close'`

<!-- YAML
added: v0.9.4
changes:
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/18438
    description: Add `emitClose` option to specify if `'close'` is emitted on
                 destroy.
-->

The `'close'` event is emitted when the stream and any of its underlying
resources (a file descriptor, for example) have been closed. The event indicates
that no more events will be emitted, and no further computation will occur.

A [`Readable`][] stream will always emit the `'close'` event if it is
created with the `emitClose` option.

##### Event: `'data'`

<!-- YAML
added: v0.9.4
-->

* `chunk` {Buffer|string|any} The chunk of data. For streams that are not
  operating in object mode, the chunk will be either a string or `Buffer`.
  For streams that are in object mode, the chunk can be any JavaScript value
  other than `null`.

The `'data'` event is emitted whenever the stream is relinquishing ownership of
a chunk of data to a consumer. This may occur whenever the stream is switched
in flowing mode by calling `readable.pipe()`, `readable.resume()`, or by
attaching a listener callback to the `'data'` event. The `'data'` event will
also be emitted whenever the `readable.read()` method is called and a chunk of
data is available to be returned.

Attaching a `'data'` event listener to a stream that has not been explicitly
paused will switch the stream into flowing mode. Data will then be passed as
soon as it is available.

The listener callback will be passed the chunk of data as a string if a default
encoding has been specified for the stream using the
`readable.setEncoding()` method; otherwise the data will be passed as a
`Buffer`.

```js
const readable = getReadableStreamSomehow();
readable.on('data', (chunk) => {
  console.log(`Received ${chunk.length} bytes of data.`);
});
```

##### Event: `'end'`

<!-- YAML
added: v0.9.4
-->

The `'end'` event is emitted when there is no more data to be consumed from
the stream.

The `'end'` event **will not be emitted** unless the data is completely
consumed. This can be accomplished by switching the stream into flowing mode,
or by calling [`stream.read()`][stream-read] repeatedly until all data has been
consumed.

```js
const readable = getReadableStreamSomehow();
readable.on('data', (chunk) => {
  console.log(`Received ${chunk.length} bytes of data.`);
});
readable.on('end', () => {
  console.log('There will be no more data.');
});
```

##### Event: `'error'`

<!-- YAML
added: v0.9.4
-->

* {Error}

The `'error'` event may be emitted by a `Readable` implementation at any time.
Typically, this may occur if the underlying stream is unable to generate data
due to an underlying internal failure, or when a stream implementation attempts
to push an invalid chunk of data.

The listener callback will be passed a single `Error` object.

##### Event: `'pause'`

<!-- YAML
added: v0.9.4
-->

The `'pause'` event is emitted when [`stream.pause()`][stream-pause] is called
and `readableFlowing` is not `false`.

##### Event: `'readable'`

<!-- YAML
added: v0.9.4
changes:
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/17979
    description: The `'readable'` is always emitted in the next tick after
                 `.push()` is called.
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/18994
    description: Using `'readable'` requires calling `.read()`.
-->

The `'readable'` event is emitted when there is data available to be read from
the stream, up to the configured high water mark (`state.highWaterMark`). Effectively,
it indicates that the stream has new information within the buffer. If data is available
within this buffer, [`stream.read()`][stream-read] can be called to retrieve that data.
Additionally, the `'readable'` event may also be emitted when the end of the stream has been
reached.

```js
const readable = getReadableStreamSomehow();
readable.on('readable', function() {
  // There is some data to read now.
  let data;

  while ((data = this.read()) !== null) {
    console.log(data);
  }
});
```

If the end of the stream has been reached, calling
[`stream.read()`][stream-read] will return `null` and trigger the `'end'`
event. This is also true if there never was any data to be read. For instance,
in the following example, `foo.txt` is an empty file:

```js
const fs = require('node:fs');
const rr = fs.createReadStream('foo.txt');
rr.on('readable', () => {
  console.log(`readable: ${rr.read()}`);
});
rr.on('end', () => {
  console.log('end');
});
```

The output of running this script is:

```console
$ node test.js
readable: null
end
```

In some cases, attaching a listener for the `'readable'` event will cause some
amount of data to be read into an internal buffer.

In general, the `readable.pipe()` and `'data'` event mechanisms are easier to
understand than the `'readable'` event. However, handling `'readable'` might
result in increased throughput.

If both `'readable'` and [`'data'`][] are used at the same time, `'readable'`
takes precedence in controlling the flow, i.e. `'data'` will be emitted
only when [`stream.read()`][stream-read] is called. The
`readableFlowing` property would become `false`.
If there are `'data'` listeners when `'readable'` is removed, the stream
will start flowing, i.e. `'data'` events will be emitted without calling
`.resume()`.

##### Event: `'resume'`

<!-- YAML
added: v0.9.4
-->

The `'resume'` event is emitted when [`stream.resume()`][stream-resume] is
called and `readableFlowing` is not `true`.

##### `readable.destroy([error])`

<!-- YAML
added: v8.0.0
changes:
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/29197
    description: Work as a no-op on a stream that has already been destroyed.
-->

* `error` {Error} Error which will be passed as payload in `'error'` event
* Returns: {this}

Destroy the stream. Optionally emit an `'error'` event, and emit a `'close'`
event (unless `emitClose` is set to `false`). After this call, the readable
stream will release any internal resources and subsequent calls to `push()`
will be ignored.

Once `destroy()` has been called any further calls will be a no-op and no
further errors except from `_destroy()` may be emitted as `'error'`.

Implementors should not override this method, but instead implement
[`readable._destroy()`][readable-_destroy].

##### `readable.closed`

<!-- YAML
added: v18.0.0
-->

* {boolean}

Is `true` after `'close'` has been emitted.

##### `readable.destroyed`

<!-- YAML
added: v8.0.0
-->

* {boolean}

Is `true` after [`readable.destroy()`][readable-destroy] has been called.

##### `readable.isPaused()`

<!-- YAML
added: v0.11.14
-->

* Returns: {boolean}

The `readable.isPaused()` method returns the current operating state of the
`Readable`. This is used primarily by the mechanism that underlies the
`readable.pipe()` method. In most typical cases, there will be no reason to
use this method directly.

```js
const readable = new stream.Readable();

readable.isPaused(); // === false
readable.pause();
readable.isPaused(); // === true
readable.resume();
readable.isPaused(); // === false
```

##### `readable.pause()`

<!-- YAML
added: v0.9.4
-->

* Returns: {this}

The `readable.pause()` method will cause a stream in flowing mode to stop
emitting [`'data'`][] events, switching out of flowing mode. Any data that
becomes available will remain in the internal buffer.

```js
const readable = getReadableStreamSomehow();
readable.on('data', (chunk) => {
  console.log(`Received ${chunk.length} bytes of data.`);
  readable.pause();
  console.log('There will be no additional data for 1 second.');
  setTimeout(() => {
    console.log('Now data will start flowing again.');
    readable.resume();
  }, 1000);
});
```

The `readable.pause()` method has no effect if there is a `'readable'`
event listener.

##### `readable.pipe(destination[, options])`

<!-- YAML
added: v0.9.4
-->

* `destination` {stream.Writable} The destination for writing data
* `options` {Object} Pipe options
  * `end` {boolean} End the writer when the reader ends. **Default:** `true`.
* Returns: {stream.Writable} The _destination_, allowing for a chain of pipes if
  it is a [`Duplex`][] or a [`Transform`][] stream

The `readable.pipe()` method attaches a [`Writable`][] stream to the `readable`,
causing it to switch automatically into flowing mode and push all of its data
to the attached [`Writable`][]. The flow of data will be automatically managed
so that the destination `Writable` stream is not overwhelmed by a faster
`Readable` stream.

The following example pipes all of the data from the `readable` into a file
named `file.txt`:

```js
const fs = require('node:fs');
const readable = getReadableStreamSomehow();
const writable = fs.createWriteStream('file.txt');
// All the data from readable goes into 'file.txt'.
readable.pipe(writable);
```

It is possible to attach multiple `Writable` streams to a single `Readable`
stream.

The `readable.pipe()` method returns a reference to the _destination_ stream
making it possible to set up chains of piped streams:

```js
const fs = require('node:fs');
const zlib = require('node:zlib');
const r = fs.createReadStream('file.txt');
const z = zlib.createGzip();
const w = fs.createWriteStream('file.txt.gz');
r.pipe(z).pipe(w);
```

By default, [`stream.end()`][stream-end] is called on the destination `Writable`
stream when the source `Readable` stream emits [`'end'`][], so that the
destination is no longer writable. To disable this default behavior, the `end`
option can be passed as `false`, causing the destination stream to remain open:

```js
reader.pipe(writer, { end: false });
reader.on('end', () => {
  writer.end('Goodbye\n');
});
```

One important caveat is that if the `Readable` stream emits an error during
processing, the `Writable` destination _is not closed_ automatically. If an
error occurs, it will be necessary to _manually_ close each stream in order
to prevent memory leaks.

The [`process.stderr`][] and [`process.stdout`][] `Writable` streams are never
closed until the Node.js process exits, regardless of the specified options.

##### `readable.read([size])`

<!-- YAML
added: v0.9.4
-->

* `size` {number} Optional argument to specify how much data to read.
* Returns: {string|Buffer|null|any}

The `readable.read()` method reads data out of the internal buffer and
returns it. If no data is available to be read, `null` is returned. By default,
the data is returned as a `Buffer` object unless an encoding has been
specified using the `readable.setEncoding()` method or the stream is operating
in object mode.

The optional `size` argument specifies a specific number of bytes to read. If
`size` bytes are not available to be read, `null` will be returned _unless_
the stream has ended, in which case all of the data remaining in the internal
buffer will be returned.

If the `size` argument is not specified, all of the data contained in the
internal buffer will be returned.

The `size` argument must be less than or equal to 1 GiB.

The `readable.read()` method should only be called on `Readable` streams
operating in paused mode. In flowing mode, `readable.read()` is called
automatically until the internal buffer is fully drained.

```js
const readable = getReadableStreamSomehow();

// 'readable' may be triggered multiple times as data is buffered in
readable.on('readable', () => {
  let chunk;
  console.log('Stream is readable (new data received in buffer)');
  // Use a loop to make sure we read all currently available data
  while (null !== (chunk = readable.read())) {
    console.log(`Read ${chunk.length} bytes of data...`);
  }
});

// 'end' will be triggered once when there is no more data available
readable.on('end', () => {
  console.log('Reached end of stream.');
});
```

Each call to `readable.read()` returns a chunk of data or `null`, signifying
that there's no more data to read at that moment. These chunks aren't automatically
concatenated. Because a single `read()` call does not return all the data, using
a while loop may be necessary to continuously read chunks until all data is retrieved.
When reading a large file, `.read()` might return `null` temporarily, indicating
that it has consumed all buffered content but there may be more data yet to be
buffered. In such cases, a new `'readable'` event is emitted once there's more
data in the buffer, and the `'end'` event signifies the end of data transmission.

Therefore to read a file's whole contents from a `readable`, it is necessary
to collect chunks across multiple `'readable'` events:

```js
const chunks = [];

readable.on('readable', () => {
  let chunk;
  while (null !== (chunk = readable.read())) {
    chunks.push(chunk);
  }
});

readable.on('end', () => {
  const content = chunks.join('');
});
```

A `Readable` stream in object mode will always return a single item from
a call to [`readable.read(size)`][stream-read], regardless of the value of the
`size` argument.

If the `readable.read()` method returns a chunk of data, a `'data'` event will
also be emitted.

Calling [`stream.read([size])`][stream-read] after the [`'end'`][] event has
been emitted will return `null`. No runtime error will be raised.

##### `readable.readable`

<!-- YAML
added: v11.4.0
-->

* {boolean}

Is `true` if it is safe to call [`readable.read()`][stream-read], which means
the stream has not been destroyed or emitted `'error'` or `'end'`.

##### `readable.readableAborted`

<!-- YAML
added: v16.8.0
-->

> Stability: 1 - Experimental

* {boolean}

Returns whether the stream was destroyed or errored before emitting `'end'`.

##### `readable.readableDidRead`

<!-- YAML
added:
  - v16.7.0
  - v14.18.0
-->

> Stability: 1 - Experimental

* {boolean}

Returns whether `'data'` has been emitted.

##### `readable.readableEncoding`

<!-- YAML
added: v12.7.0
-->

* {null|string}

Getter for the property `encoding` of a given `Readable` stream. The `encoding`
property can be set using the [`readable.setEncoding()`][] method.

##### `readable.readableEnded`

<!-- YAML
added: v12.9.0
-->

* {boolean}

Becomes `true` when [`'end'`][] event is emitted.

##### `readable.errored`

<!-- YAML
added:
  v18.0.0
-->

* {Error}

Returns error if the stream has been destroyed with an error.

##### `readable.readableFlowing`

<!-- YAML
added: v9.4.0
-->

* {boolean}

This property reflects the current state of a `Readable` stream as described
in the [Three states][] section.

##### `readable.readableHighWaterMark`

<!-- YAML
added: v9.3.0
-->

* {number}

Returns the value of `highWaterMark` passed when creating this `Readable`.

##### `readable.readableLength`

<!-- YAML
added: v9.4.0
-->

* {number}

This property contains the number of bytes (or objects) in the queue
ready to be read. The value provides introspection data regarding
the status of the `highWaterMark`.

##### `readable.readableObjectMode`

<!-- YAML
added: v12.3.0
-->

* {boolean}

Getter for the property `objectMode` of a given `Readable` stream.

##### `readable.resume()`

<!-- YAML
added: v0.9.4
changes:
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/18994
    description: The `resume()` has no effect if there is a `'readable'` event
                 listening.
-->

* Returns: {this}

The `readable.resume()` method causes an explicitly paused `Readable` stream to
resume emitting [`'data'`][] events, switching the stream into flowing mode.

The `readable.resume()` method can be used to fully consume the data from a
stream without actually processing any of that data:

```js
getReadableStreamSomehow()
  .resume()
  .on('end', () => {
    console.log('Reached the end, but did not read anything.');
  });
```

The `readable.resume()` method has no effect if there is a `'readable'`
event listener.

##### `readable.setEncoding(encoding)`

<!-- YAML
added: v0.9.4
-->

* `encoding` {string} The encoding to use.
* Returns: {this}

The `readable.setEncoding()` method sets the character encoding for
data read from the `Readable` stream.

By default, no encoding is assigned and stream data will be returned as
`Buffer` objects. Setting an encoding causes the stream data
to be returned as strings of the specified encoding rather than as `Buffer`
objects. For instance, calling `readable.setEncoding('utf8')` will cause the
output data to be interpreted as UTF-8 data, and passed as strings. Calling
`readable.setEncoding('hex')` will cause the data to be encoded in hexadecimal
string format.

The `Readable` stream will properly handle multi-byte characters delivered
through the stream that would otherwise become improperly decoded if simply
pulled from the stream as `Buffer` objects.

```js
const readable = getReadableStreamSomehow();
readable.setEncoding('utf8');
readable.on('data', (chunk) => {
  assert.equal(typeof chunk, 'string');
  console.log('Got %d characters of string data:', chunk.length);
});
```

##### `readable.unpipe([destination])`

<!-- YAML
added: v0.9.4
-->

* `destination` {stream.Writable} Optional specific stream to unpipe
* Returns: {this}

The `readable.unpipe()` method detaches a `Writable` stream previously attached
using the [`stream.pipe()`][] method.

If the `destination` is not specified, then _all_ pipes are detached.

If the `destination` is specified, but no pipe is set up for it, then
the method does nothing.

```js
const fs = require('node:fs');
const readable = getReadableStreamSomehow();
const writable = fs.createWriteStream('file.txt');
// All the data from readable goes into 'file.txt',
// but only for the first second.
readable.pipe(writable);
setTimeout(() => {
  console.log('Stop writing to file.txt.');
  readable.unpipe(writable);
  console.log('Manually close the file stream.');
  writable.end();
}, 1000);
```

##### `readable.unshift(chunk[, encoding])`

<!-- YAML
added: v0.9.11
changes:
  - version: v20.13.0
    pr-url: https://github.com/nodejs/node/pull/51866
    description: The `chunk` argument can now be a `TypedArray` or `DataView` instance.
  - version: v8.0.0
    pr-url: https://github.com/nodejs/node/pull/11608
    description: The `chunk` argument can now be a `Uint8Array` instance.
-->

* `chunk` {Buffer|TypedArray|DataView|string|null|any} Chunk of data to unshift
  onto the read queue. For streams not operating in object mode, `chunk` must
  be a {string}, {Buffer}, {TypedArray}, {DataView} or `null`.
  For object mode streams, `chunk` may be any JavaScript value.
* `encoding` {string} Encoding of string chunks. Must be a valid
  `Buffer` encoding, such as `'utf8'` or `'ascii'`.

Passing `chunk` as `null` signals the end of the stream (EOF) and behaves the
same as `readable.push(null)`, after which no more data can be written. The EOF
signal is put at the end of the buffer and any buffered data will still be
flushed.

The `readable.unshift()` method pushes a chunk of data back into the internal
buffer. This is useful in certain situations where a stream is being consumed by
code that needs to "un-consume" some amount of data that it has optimistically
pulled out of the source, so that the data can be passed on to some other party.

The `stream.unshift(chunk)` method cannot be called after the [`'end'`][] event
has been emitted or a runtime error will be thrown.

Developers using `stream.unshift()` often should consider switching to
use of a [`Transform`][] stream instead. See the [API for stream implementers][]
section for more information.

```js
// Pull off a header delimited by \n\n.
// Use unshift() if we get too much.
// Call the callback with (error, header, stream).
const { StringDecoder } = require('node:string_decoder');
function parseHeader(stream, callback) {
  stream.on('error', callback);
  stream.on('readable', onReadable);
  const decoder = new StringDecoder('utf8');
  let header = '';
  function onReadable() {
    let chunk;
    while (null !== (chunk = stream.read())) {
      const str = decoder.write(chunk);
      if (str.includes('\n\n')) {
        // Found the header boundary.
        const split = str.split(/\n\n/);
        header += split.shift();
        const remaining = split.join('\n\n');
        const buf = Buffer.from(remaining, 'utf8');
        stream.removeListener('error', callback);
        // Remove the 'readable' listener before unshifting.
        stream.removeListener('readable', onReadable);
        if (buf.length)
          stream.unshift(buf);
        // Now the body of the message can be read from the stream.
        callback(null, header, stream);
        return;
      }
      // Still reading the header.
      header += str;
    }
  }
}
```

Unlike [`stream.push(chunk)`][stream-push], `stream.unshift(chunk)` will not
end the reading process by resetting the internal reading state of the stream.
This can cause unexpected results if `readable.unshift()` is called during a
read (i.e. from within a [`stream._read()`][stream-_read] implementation on a
custom stream). Following the call to `readable.unshift()` with an immediate
[`stream.push('')`][stream-push] will reset the reading state appropriately,
however it is best to simply avoid calling `readable.unshift()` while in the
process of performing a read.

##### `readable.wrap(stream)`

<!-- YAML
added: v0.9.4
-->

* `stream` {Stream} An "old style" readable stream
* Returns: {this}

Prior to Node.js 0.10, streams did not implement the entire `node:stream`
module API as it is currently defined. (See [Compatibility][] for more
information.)

When using an older Node.js library that emits [`'data'`][] events and has a
[`stream.pause()`][stream-pause] method that is advisory only, the
`readable.wrap()` method can be used to create a [`Readable`][] stream that uses
the old stream as its data source.

It will rarely be necessary to use `readable.wrap()` but the method has been
provided as a convenience for interacting with older Node.js applications and
libraries.

```js
const { OldReader } = require('./old-api-module.js');
const { Readable } = require('node:stream');
const oreader = new OldReader();
const myReader = new Readable().wrap(oreader);

myReader.on('readable', () => {
  myReader.read(); // etc.
});
```

##### `readable[Symbol.asyncIterator]()`

<!-- YAML
added: v10.0.0
changes:
  - version: v11.14.0
    pr-url: https://github.com/nodejs/node/pull/26989
    description: Symbol.asyncIterator support is no longer experimental.
-->

* Returns: {AsyncIterator} to fully consume the stream.

```js
const fs = require('node:fs');

async function print(readable) {
  readable.setEncoding('utf8');
  let data = '';
  for await (const chunk of readable) {
    data += chunk;
  }
  console.log(data);
}

print(fs.createReadStream('file')).catch(console.error);
```

If the loop terminates with a `break`, `return`, or a `throw`, the stream will
be destroyed. In other terms, iterating over a stream will consume the stream
fully. The stream will be read in chunks of size equal to the `highWaterMark`
option. In the code example above, data will be in a single chunk if the file
has less then 64 KiB of data because no `highWaterMark` option is provided to
[`fs.createReadStream()`][].

##### `readable[Symbol.asyncDispose]()`

<!-- YAML
added: v20.4.0
-->

> Stability: 1 - Experimental

Calls [`readable.destroy()`][readable-destroy] with an `AbortError` and returns
a promise that fulfills when the stream is finished.

##### `readable.compose(stream[, options])`

<!-- YAML
added:
  - v19.1.0
  - v18.13.0
-->

> Stability: 1 - Experimental

* `stream` {Stream|Iterable|AsyncIterable|Function}
* `options` {Object}
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Duplex} a stream composed with the stream `stream`.

```mjs
import { Readable } from 'node:stream';

async function* splitToWords(source) {
  for await (const chunk of source) {
    const words = String(chunk).split(' ');

    for (const word of words) {
      yield word;
    }
  }
}

const wordsStream = Readable.from(['this is', 'compose as operator']).compose(splitToWords);
const words = await wordsStream.toArray();

console.log(words); // prints ['this', 'is', 'compose', 'as', 'operator']
```

See [`stream.compose`][] for more information.

##### `readable.iterator([options])`

<!-- YAML
added: v16.3.0
-->

> Stability: 1 - Experimental

* `options` {Object}
  * `destroyOnReturn` {boolean} When set to `false`, calling `return` on the
    async iterator, or exiting a `for await...of` iteration using a `break`,
    `return`, or `throw` will not destroy the stream. **Default:** `true`.
* Returns: {AsyncIterator} to consume the stream.

The iterator created by this method gives users the option to cancel the
destruction of the stream if the `for await...of` loop is exited by `return`,
`break`, or `throw`, or if the iterator should destroy the stream if the stream
emitted an error during iteration.

```js
const { Readable } = require('node:stream');

async function printIterator(readable) {
  for await (const chunk of readable.iterator({ destroyOnReturn: false })) {
    console.log(chunk); // 1
    break;
  }

  console.log(readable.destroyed); // false

  for await (const chunk of readable.iterator({ destroyOnReturn: false })) {
    console.log(chunk); // Will print 2 and then 3
  }

  console.log(readable.destroyed); // True, stream was totally consumed
}

async function printSymbolAsyncIterator(readable) {
  for await (const chunk of readable) {
    console.log(chunk); // 1
    break;
  }

  console.log(readable.destroyed); // true
}

async function showBoth() {
  await printIterator(Readable.from([1, 2, 3]));
  await printSymbolAsyncIterator(Readable.from([1, 2, 3]));
}

showBoth();
```

##### `readable.map(fn[, options])`

<!-- YAML
added:
  - v17.4.0
  - v16.14.0
changes:
  - version: v20.7.0
    pr-url: https://github.com/nodejs/node/pull/49249
    description: added `highWaterMark` in options.
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a function to map over every chunk in the
  stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `highWaterMark` {number} how many items to buffer while waiting for user
    consumption of the mapped items. **Default:** `concurrency * 2 - 1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Readable} a stream mapped with the function `fn`.

This method allows mapping over the stream. The `fn` function will be called
for every chunk in the stream. If the `fn` function returns a promise - that
promise will be `await`ed before being passed to the result stream.

```mjs
import { Readable } from 'node:stream';
import { Resolver } from 'node:dns/promises';

// With a synchronous mapper.
for await (const chunk of Readable.from([1, 2, 3, 4]).map((x) => x * 2)) {
  console.log(chunk); // 2, 4, 6, 8
}
// With an asynchronous mapper, making at most 2 queries at a time.
const resolver = new Resolver();
const dnsResults = Readable.from([
  'nodejs.org',
  'openjsf.org',
  'www.linuxfoundation.org',
]).map((domain) => resolver.resolve4(domain), { concurrency: 2 });
for await (const result of dnsResults) {
  console.log(result); // Logs the DNS result of resolver.resolve4.
}
```

##### `readable.filter(fn[, options])`

<!-- YAML
added:
  - v17.4.0
  - v16.14.0
changes:
  - version: v20.7.0
    pr-url: https://github.com/nodejs/node/pull/49249
    description: added `highWaterMark` in options.
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a function to filter chunks from the stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `highWaterMark` {number} how many items to buffer while waiting for user
    consumption of the filtered items. **Default:** `concurrency * 2 - 1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Readable} a stream filtered with the predicate `fn`.

This method allows filtering the stream. For each chunk in the stream the `fn`
function will be called and if it returns a truthy value, the chunk will be
passed to the result stream. If the `fn` function returns a promise - that
promise will be `await`ed.

```mjs
import { Readable } from 'node:stream';
import { Resolver } from 'node:dns/promises';

// With a synchronous predicate.
for await (const chunk of Readable.from([1, 2, 3, 4]).filter((x) => x > 2)) {
  console.log(chunk); // 3, 4
}
// With an asynchronous predicate, making at most 2 queries at a time.
const resolver = new Resolver();
const dnsResults = Readable.from([
  'nodejs.org',
  'openjsf.org',
  'www.linuxfoundation.org',
]).filter(async (domain) => {
  const { address } = await resolver.resolve4(domain, { ttl: true });
  return address.ttl > 60;
}, { concurrency: 2 });
for await (const result of dnsResults) {
  // Logs domains with more than 60 seconds on the resolved dns record.
  console.log(result);
}
```

##### `readable.forEach(fn[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a function to call on each chunk of the stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Promise} a promise for when the stream has finished.

This method allows iterating a stream. For each chunk in the stream the
`fn` function will be called. If the `fn` function returns a promise - that
promise will be `await`ed.

This method is different from `for await...of` loops in that it can optionally
process chunks concurrently. In addition, a `forEach` iteration can only be
stopped by having passed a `signal` option and aborting the related
`AbortController` while `for await...of` can be stopped with `break` or
`return`. In either case the stream will be destroyed.

This method is different from listening to the [`'data'`][] event in that it
uses the [`readable`][] event in the underlying machinary and can limit the
number of concurrent `fn` calls.

```mjs
import { Readable } from 'node:stream';
import { Resolver } from 'node:dns/promises';

// With a synchronous predicate.
for await (const chunk of Readable.from([1, 2, 3, 4]).filter((x) => x > 2)) {
  console.log(chunk); // 3, 4
}
// With an asynchronous predicate, making at most 2 queries at a time.
const resolver = new Resolver();
const dnsResults = Readable.from([
  'nodejs.org',
  'openjsf.org',
  'www.linuxfoundation.org',
]).map(async (domain) => {
  const { address } = await resolver.resolve4(domain, { ttl: true });
  return address;
}, { concurrency: 2 });
await dnsResults.forEach((result) => {
  // Logs result, similar to `for await (const result of dnsResults)`
  console.log(result);
});
console.log('done'); // Stream has finished
```

##### `readable.toArray([options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `options` {Object}
  * `signal` {AbortSignal} allows cancelling the toArray operation if the
    signal is aborted.
* Returns: {Promise} a promise containing an array with the contents of the
  stream.

This method allows easily obtaining the contents of a stream.

As this method reads the entire stream into memory, it negates the benefits of
streams. It's intended for interoperability and convenience, not as the primary
way to consume streams.

```mjs
import { Readable } from 'node:stream';
import { Resolver } from 'node:dns/promises';

await Readable.from([1, 2, 3, 4]).toArray(); // [1, 2, 3, 4]

// Make dns queries concurrently using .map and collect
// the results into an array using toArray
const dnsResults = await Readable.from([
  'nodejs.org',
  'openjsf.org',
  'www.linuxfoundation.org',
]).map(async (domain) => {
  const { address } = await resolver.resolve4(domain, { ttl: true });
  return address;
}, { concurrency: 2 }).toArray();
```

##### `readable.some(fn[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a function to call on each chunk of the stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Promise} a promise evaluating to `true` if `fn` returned a truthy
  value for at least one of the chunks.

This method is similar to `Array.prototype.some` and calls `fn` on each chunk
in the stream until the awaited return value is `true` (or any truthy value).
Once an `fn` call on a chunk awaited return value is truthy, the stream is
destroyed and the promise is fulfilled with `true`. If none of the `fn`
calls on the chunks return a truthy value, the promise is fulfilled with
`false`.

```mjs
import { Readable } from 'node:stream';
import { stat } from 'node:fs/promises';

// With a synchronous predicate.
await Readable.from([1, 2, 3, 4]).some((x) => x > 2); // true
await Readable.from([1, 2, 3, 4]).some((x) => x < 0); // false

// With an asynchronous predicate, making at most 2 file checks at a time.
const anyBigFile = await Readable.from([
  'file1',
  'file2',
  'file3',
]).some(async (fileName) => {
  const stats = await stat(fileName);
  return stats.size > 1024 * 1024;
}, { concurrency: 2 });
console.log(anyBigFile); // `true` if any file in the list is bigger than 1MB
console.log('done'); // Stream has finished
```

##### `readable.find(fn[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.17.0
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a function to call on each chunk of the stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Promise} a promise evaluating to the first chunk for which `fn`
  evaluated with a truthy value, or `undefined` if no element was found.

This method is similar to `Array.prototype.find` and calls `fn` on each chunk
in the stream to find a chunk with a truthy value for `fn`. Once an `fn` call's
awaited return value is truthy, the stream is destroyed and the promise is
fulfilled with value for which `fn` returned a truthy value. If all of the
`fn` calls on the chunks return a falsy value, the promise is fulfilled with
`undefined`.

```mjs
import { Readable } from 'node:stream';
import { stat } from 'node:fs/promises';

// With a synchronous predicate.
await Readable.from([1, 2, 3, 4]).find((x) => x > 2); // 3
await Readable.from([1, 2, 3, 4]).find((x) => x > 0); // 1
await Readable.from([1, 2, 3, 4]).find((x) => x > 10); // undefined

// With an asynchronous predicate, making at most 2 file checks at a time.
const foundBigFile = await Readable.from([
  'file1',
  'file2',
  'file3',
]).find(async (fileName) => {
  const stats = await stat(fileName);
  return stats.size > 1024 * 1024;
}, { concurrency: 2 });
console.log(foundBigFile); // File name of large file, if any file in the list is bigger than 1MB
console.log('done'); // Stream has finished
```

##### `readable.every(fn[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a function to call on each chunk of the stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Promise} a promise evaluating to `true` if `fn` returned a truthy
  value for all of the chunks.

This method is similar to `Array.prototype.every` and calls `fn` on each chunk
in the stream to check if all awaited return values are truthy value for `fn`.
Once an `fn` call on a chunk awaited return value is falsy, the stream is
destroyed and the promise is fulfilled with `false`. If all of the `fn` calls
on the chunks return a truthy value, the promise is fulfilled with `true`.

```mjs
import { Readable } from 'node:stream';
import { stat } from 'node:fs/promises';

// With a synchronous predicate.
await Readable.from([1, 2, 3, 4]).every((x) => x > 2); // false
await Readable.from([1, 2, 3, 4]).every((x) => x > 0); // true

// With an asynchronous predicate, making at most 2 file checks at a time.
const allBigFiles = await Readable.from([
  'file1',
  'file2',
  'file3',
]).every(async (fileName) => {
  const stats = await stat(fileName);
  return stats.size > 1024 * 1024;
}, { concurrency: 2 });
// `true` if all files in the list are bigger than 1MiB
console.log(allBigFiles);
console.log('done'); // Stream has finished
```

##### `readable.flatMap(fn[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncGeneratorFunction|AsyncFunction} a function to map over
  every chunk in the stream.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `options` {Object}
  * `concurrency` {number} the maximum concurrent invocation of `fn` to call
    on the stream at once. **Default:** `1`.
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Readable} a stream flat-mapped with the function `fn`.

This method returns a new stream by applying the given callback to each
chunk of the stream and then flattening the result.

It is possible to return a stream or another iterable or async iterable from
`fn` and the result streams will be merged (flattened) into the returned
stream.

```mjs
import { Readable } from 'node:stream';
import { createReadStream } from 'node:fs';

// With a synchronous mapper.
for await (const chunk of Readable.from([1, 2, 3, 4]).flatMap((x) => [x, x])) {
  console.log(chunk); // 1, 1, 2, 2, 3, 3, 4, 4
}
// With an asynchronous mapper, combine the contents of 4 files
const concatResult = Readable.from([
  './1.mjs',
  './2.mjs',
  './3.mjs',
  './4.mjs',
]).flatMap((fileName) => createReadStream(fileName));
for await (const result of concatResult) {
  // This will contain the contents (all chunks) of all 4 files
  console.log(result);
}
```

##### `readable.drop(limit[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `limit` {number} the number of chunks to drop from the readable.
* `options` {Object}
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Readable} a stream with `limit` chunks dropped.

This method returns a new stream with the first `limit` chunks dropped.

```mjs
import { Readable } from 'node:stream';

await Readable.from([1, 2, 3, 4]).drop(2).toArray(); // [3, 4]
```

##### `readable.take(limit[, options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `limit` {number} the number of chunks to take from the readable.
* `options` {Object}
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Readable} a stream with `limit` chunks taken.

This method returns a new stream with the first `limit` chunks.

```mjs
import { Readable } from 'node:stream';

await Readable.from([1, 2, 3, 4]).take(2).toArray(); // [1, 2]
```

##### `readable.asIndexedPairs([options])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
changes:
  - version: v20.3.0
    pr-url: https://github.com/nodejs/node/pull/48102
    description: Using the `asIndexedPairs` method emits a runtime warning that
                  it will be removed in a future version.
-->

> Stability: 1 - Experimental

* `options` {Object}
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Readable} a stream of indexed pairs.

This method returns a new stream with chunks of the underlying stream paired
with a counter in the form `[index, chunk]`. The first index value is 0 and it
increases by 1 for each chunk produced.

```mjs
import { Readable } from 'node:stream';

const pairs = await Readable.from(['a', 'b', 'c']).asIndexedPairs().toArray();
console.log(pairs); // [[0, 'a'], [1, 'b'], [2, 'c']]
```

##### `readable.reduce(fn[, initial[, options]])`

<!-- YAML
added:
  - v17.5.0
  - v16.15.0
-->

> Stability: 1 - Experimental

* `fn` {Function|AsyncFunction} a reducer function to call over every chunk
  in the stream.
  * `previous` {any} the value obtained from the last call to `fn` or the
    `initial` value if specified or the first chunk of the stream otherwise.
  * `data` {any} a chunk of data from the stream.
  * `options` {Object}
    * `signal` {AbortSignal} aborted if the stream is destroyed allowing to
      abort the `fn` call early.
* `initial` {any} the initial value to use in the reduction.
* `options` {Object}
  * `signal` {AbortSignal} allows destroying the stream if the signal is
    aborted.
* Returns: {Promise} a promise for the final value of the reduction.

This method calls `fn` on each chunk of the stream in order, passing it the
result from the calculation on the previous element. It returns a promise for
the final value of the reduction.

If no `initial` value is supplied the first chunk of the stream is used as the
initial value. If the stream is empty, the promise is rejected with a
`TypeError` with the `ERR_INVALID_ARGS` code property.

```mjs
import { Readable } from 'node:stream';
import { readdir, stat } from 'node:fs/promises';
import { join } from 'node:path';

const directoryPath = './src';
const filesInDir = await readdir(directoryPath);

const folderSize = await Readable.from(filesInDir)
  .reduce(async (totalSize, file) => {
    const { size } = await stat(join(directoryPath, file));
    return totalSize + size;
  }, 0);

console.log(folderSize);
```

The reducer function iterates the stream element-by-element which means that
there is no `concurrency` parameter or parallelism. To perform a `reduce`
concurrently, you can extract the async function to [`readable.map`][] method.

```mjs
import { Readable } from 'node:stream';
import { readdir, stat } from 'node:fs/promises';
import { join } from 'node:path';

const directoryPath = './src';
const filesInDir = await readdir(directoryPath);

const folderSize = await Readable.from(filesInDir)
  .map((file) => stat(join(directoryPath, file)), { concurrency: 2 })
  .reduce((totalSize, { size }) => totalSize + size, 0);

console.log(folderSize);
```

### Duplex and transform streams

#### Class: `stream.Duplex`

<!-- YAML
added: v0.9.4
changes:
  - version: v6.8.0
    pr-url: https://github.com/nodejs/node/pull/8834
    description: Instances of `Duplex` now return `true` when
                 checking `instanceof stream.Writable`.
-->

<!--type=class-->

Duplex streams are streams that implement both the [`Readable`][] and
[`Writable`][] interfaces.

Examples of `Duplex` streams include:

* [TCP sockets][]
* [zlib streams][zlib]
* [crypto streams][crypto]

##### `duplex.allowHalfOpen`

<!-- YAML
added: v0.9.4
-->

* {boolean}

If `false` then the stream will automatically end the writable side when the
readable side ends. Set initially by the `allowHalfOpen` constructor option,
which defaults to `true`.

This can be changed manually to change the half-open behavior of an existing
`Duplex` stream instance, but must be changed before the `'end'` event is
emitted.

#### Class: `stream.Transform`

<!-- YAML
added: v0.9.4
-->

<!--type=class-->

Transform streams are [`Duplex`][] streams where the output is in some way
related to the input. Like all [`Duplex`][] streams, `Transform` streams
implement both the [`Readable`][] and [`Writable`][] interfaces.

Examples of `Transform` streams include:

* [zlib streams][zlib]
* [crypto streams][crypto]

##### `transform.destroy([error])`

<!-- YAML
added: v8.0.0
changes:
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/29197
    description: Work as a no-op on a stream that has already been destroyed.
-->

* `error` {Error}
* Returns: {this}

Destroy the stream, and optionally emit an `'error'` event. After this call, the
transform stream would release any internal resources.
Implementors should not override this method, but instead implement
[`readable._destroy()`][readable-_destroy].
The default implementation of `_destroy()` for `Transform` also emit `'close'`
unless `emitClose` is set in false.

Once `destroy()` has been called, any further calls will be a no-op and no
further errors except from `_destroy()` may be emitted as `'error'`.

#### `stream.duplexPair([options])`

<!-- YAML
added: v20.17.0
-->

* `options` {Object} A value to pass to both [`Duplex`][] constructors,
  to set options such as buffering.
* Returns: {Array} of two [`Duplex`][] instances.

The utility function `duplexPair` returns an Array with two items,
each being a `Duplex` stream connected to the other side:

```js
const [ sideA, sideB ] = duplexPair();
```

Whatever is written to one stream is made readable on the other. It provides
behavior analogous to a network connection, where the data written by the client
becomes readable by the server, and vice-versa.

The Duplex streams are symmetrical; one or the other may be used without any
difference in behavior.

### `stream.finished(stream[, options], callback)`

<!-- YAML
added: v10.0.0
changes:
  - version: v19.5.0
    pr-url: https://github.com/nodejs/node/pull/46205
    description: Added support for `ReadableStream` and `WritableStream`.
  - version: v15.11.0
    pr-url: https://github.com/nodejs/node/pull/37354
    description: The `signal` option was added.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/32158
    description: The `finished(stream, cb)` will wait for the `'close'` event
                 before invoking the callback. The implementation tries to
                 detect legacy streams and only apply this behavior to streams
                 which are expected to emit `'close'`.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/31545
    description: Emitting `'close'` before `'end'` on a `Readable` stream
                 will cause an `ERR_STREAM_PREMATURE_CLOSE` error.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/31509
    description: Callback will be invoked on streams which have already
                 finished before the call to `finished(stream, cb)`.
-->

* `stream` {Stream|ReadableStream|WritableStream} A readable and/or writable
  stream/webstream.
* `options` {Object}
  * `error` {boolean} If set to `false`, then a call to `emit('error', err)` is
    not treated as finished. **Default:** `true`.
  * `readable` {boolean} When set to `false`, the callback will be called when
    the stream ends even though the stream might still be readable.
    **Default:** `true`.
  * `writable` {boolean} When set to `false`, the callback will be called when
    the stream ends even though the stream might still be writable.
    **Default:** `true`.
  * `signal` {AbortSignal} allows aborting the wait for the stream finish. The
    underlying stream will _not_ be aborted if the signal is aborted. The
    callback will get called with an `AbortError`. All registered
    listeners added by this function will also be removed.
  * `cleanup` {boolean} remove all registered stream listeners.
    **Default:** `false`.
* `callback` {Function} A callback function that takes an optional error
  argument.
* Returns: {Function} A cleanup function which removes all registered
  listeners.

A function to get notified when a stream is no longer readable, writable
or has experienced an error or a premature close event.

```js
const { finished } = require('node:stream');
const fs = require('node:fs');

const rs = fs.createReadStream('archive.tar');

finished(rs, (err) => {
  if (err) {
    console.error('Stream failed.', err);
  } else {
    console.log('Stream is done reading.');
  }
});

rs.resume(); // Drain the stream.
```

Especially useful in error handling scenarios where a stream is destroyed
prematurely (like an aborted HTTP request), and will not emit `'end'`
or `'finish'`.

The `finished` API provides [promise version][stream-finished-promise].

`stream.finished()` leaves dangling event listeners (in particular
`'error'`, `'end'`, `'finish'` and `'close'`) after `callback` has been
invoked. The reason for this is so that unexpected `'error'` events (due to
incorrect stream implementations) do not cause unexpected crashes.
If this is unwanted behavior then the returned cleanup function needs to be
invoked in the callback:

```js
const cleanup = finished(rs, (err) => {
  cleanup();
  // ...
});
```

### `stream.pipeline(source[, ...transforms], destination, callback)`

### `stream.pipeline(streams, callback)`

<!-- YAML
added: v10.0.0
changes:
  - version: v19.7.0
    pr-url: https://github.com/nodejs/node/pull/46307
    description: Added support for webstreams.
  - version: v18.0.0
    pr-url: https://github.com/nodejs/node/pull/41678
    description: Passing an invalid callback to the `callback` argument
                 now throws `ERR_INVALID_ARG_TYPE` instead of
                 `ERR_INVALID_CALLBACK`.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/32158
    description: The `pipeline(..., cb)` will wait for the `'close'` event
                 before invoking the callback. The implementation tries to
                 detect legacy streams and only apply this behavior to streams
                 which are expected to emit `'close'`.
  - version: v13.10.0
    pr-url: https://github.com/nodejs/node/pull/31223
    description: Add support for async generators.
-->

* `streams` {Stream\[]|Iterable\[]|AsyncIterable\[]|Function\[]|
  ReadableStream\[]|WritableStream\[]|TransformStream\[]}
* `source` {Stream|Iterable|AsyncIterable|Function|ReadableStream}
  * Returns: {Iterable|AsyncIterable}
* `...transforms` {Stream|Function|TransformStream}
  * `source` {AsyncIterable}
  * Returns: {AsyncIterable}
* `destination` {Stream|Function|WritableStream}
  * `source` {AsyncIterable}
  * Returns: {AsyncIterable|Promise}
* `callback` {Function} Called when the pipeline is fully done.
  * `err` {Error}
  * `val` Resolved value of `Promise` returned by `destination`.
* Returns: {Stream}

A module method to pipe between streams and generators forwarding errors and
properly cleaning up and provide a callback when the pipeline is complete.

```js
const { pipeline } = require('node:stream');
const fs = require('node:fs');
const zlib = require('node:zlib');

// Use the pipeline API to easily pipe a series of streams
// together and get notified when the pipeline is fully done.

// A pipeline to gzip a potentially huge tar file efficiently:

pipeline(
  fs.createReadStream('archive.tar'),
  zlib.createGzip(),
  fs.createWriteStream('archive.tar.gz'),
  (err) => {
    if (err) {
      console.error('Pipeline failed.', err);
    } else {
      console.log('Pipeline succeeded.');
    }
  },
);
```

The `pipeline` API provides a [promise version][stream-pipeline-promise].

`stream.pipeline()` will call `stream.destroy(err)` on all streams except:

* `Readable` streams which have emitted `'end'` or `'close'`.
* `Writable` streams which have emitted `'finish'` or `'close'`.

`stream.pipeline()` leaves dangling event listeners on the streams
after the `callback` has been invoked. In the case of reuse of streams after
failure, this can cause event listener leaks and swallowed errors. If the last
stream is readable, dangling event listeners will be removed so that the last
stream can be consumed later.

`stream.pipeline()` closes all the streams when an error is raised.
The `IncomingRequest` usage with `pipeline` could lead to an unexpected behavior
once it would destroy the socket without sending the expected response.
See the example below:

```js
const fs = require('node:fs');
const http = require('node:http');
const { pipeline } = require('node:stream');

const server = http.createServer((req, res) => {
  const fileStream = fs.createReadStream('./fileNotExist.txt');
  pipeline(fileStream, res, (err) => {
    if (err) {
      console.log(err); // No such file
      // this message can't be sent once `pipeline` already destroyed the socket
      return res.end('error!!!');
    }
  });
});
```

### `stream.compose(...streams)`

<!-- YAML
added: v16.9.0
changes:
  - version: v20.10.0
    pr-url: https://github.com/nodejs/node/pull/50187
    description: Added support for stream class.
  - version:
    - v19.8.0
    - v18.16.0
    pr-url: https://github.com/nodejs/node/pull/46675
    description: Added support for webstreams.
-->

> Stability: 1 - `stream.compose` is experimental.

* `streams` {Stream\[]|Iterable\[]|AsyncIterable\[]|Function\[]|
  ReadableStream\[]|WritableStream\[]|TransformStream\[]|Duplex\[]|Function}
* Returns: {stream.Duplex}

Combines two or more streams into a `Duplex` stream that writes to the
first stream and reads from the last. Each provided stream is piped into
the next, using `stream.pipeline`. If any of the streams error then all
are destroyed, including the outer `Duplex` stream.

Because `stream.compose` returns a new stream that in turn can (and
should) be piped into other streams, it enables composition. In contrast,
when passing streams to `stream.pipeline`, typically the first stream is
a readable stream and the last a writable stream, forming a closed
circuit.

If passed a `Function` it must be a factory method taking a `source`
`Iterable`.

```mjs
import { compose, Transform } from 'node:stream';

const removeSpaces = new Transform({
  transform(chunk, encoding, callback) {
    callback(null, String(chunk).replace(' ', ''));
  },
});

async function* toUpper(source) {
  for await (const chunk of source) {
    yield String(chunk).toUpperCase();
  }
}

let res = '';
for await (const buf of compose(removeSpaces, toUpper).end('hello world')) {
  res += buf;
}

console.log(res); // prints 'HELLOWORLD'
```

`stream.compose` can be used to convert async iterables, generators and
functions into streams.

* `AsyncIterable` converts into a readable `Duplex`. Cannot yield
  `null`.
* `AsyncGeneratorFunction` converts into a readable/writable transform `Duplex`.
  Must take a source `AsyncIterable` as first parameter. Cannot yield
  `null`.
* `AsyncFunction` converts into a writable `Duplex`. Must return
  either `null` or `undefined`.

```mjs
import { compose } from 'node:stream';
import { finished } from 'node:stream/promises';

// Convert AsyncIterable into readable Duplex.
const s1 = compose(async function*() {
  yield 'Hello';
  yield 'World';
}());

// Convert AsyncGenerator into transform Duplex.
const s2 = compose(async function*(source) {
  for await (const chunk of source) {
    yield String(chunk).toUpperCase();
  }
});

let res = '';

// Convert AsyncFunction into writable Duplex.
const s3 = compose(async function(source) {
  for await (const chunk of source) {
    res += chunk;
  }
});

await finished(compose(s1, s2, s3));

console.log(res); // prints 'HELLOWORLD'
```

See [`readable.compose(stream)`][] for `stream.compose` as operator.

### `stream.Readable.from(iterable[, options])`

<!-- YAML
added:
  - v12.3.0
  - v10.17.0
-->

* `iterable` {Iterable} Object implementing the `Symbol.asyncIterator` or
  `Symbol.iterator` iterable protocol. Emits an 'error' event if a null
  value is passed.
* `options` {Object} Options provided to `new stream.Readable([options])`.
  By default, `Readable.from()` will set `options.objectMode` to `true`, unless
  this is explicitly opted out by setting `options.objectMode` to `false`.
* Returns: {stream.Readable}

A utility method for creating readable streams out of iterators.

```js
const { Readable } = require('node:stream');

async function * generate() {
  yield 'hello';
  yield 'streams';
}

const readable = Readable.from(generate());

readable.on('data', (chunk) => {
  console.log(chunk);
});
```

Calling `Readable.from(string)` or `Readable.from(buffer)` will not have
the strings or buffers be iterated to match the other streams semantics
for performance reasons.

If an `Iterable` object containing promises is passed as an argument,
it might result in unhandled rejection.

```js
const { Readable } = require('node:stream');

Readable.from([
  new Promise((resolve) => setTimeout(resolve('1'), 1500)),
  new Promise((_, reject) => setTimeout(reject(new Error('2')), 1000)), // Unhandled rejection
]);
```

### `stream.Readable.fromWeb(readableStream[, options])`

<!-- YAML
added: v17.0.0
-->

> Stability: 1 - Experimental

* `readableStream` {ReadableStream}
* `options` {Object}
  * `encoding` {string}
  * `highWaterMark` {number}
  * `objectMode` {boolean}
  * `signal` {AbortSignal}
* Returns: {stream.Readable}

### `stream.Readable.isDisturbed(stream)`

<!-- YAML
added: v16.8.0
-->

> Stability: 1 - Experimental

* `stream` {stream.Readable|ReadableStream}
* Returns: `boolean`

Returns whether the stream has been read from or cancelled.

### `stream.isErrored(stream)`

<!-- YAML
added:
  - v17.3.0
  - v16.14.0
-->

> Stability: 1 - Experimental

* `stream` {Readable|Writable|Duplex|WritableStream|ReadableStream}
* Returns: {boolean}

Returns whether the stream has encountered an error.

### `stream.isReadable(stream)`

<!-- YAML
added:
  - v17.4.0
  - v16.14.0
-->

> Stability: 1 - Experimental

* `stream` {Readable|Duplex|ReadableStream}
* Returns: {boolean}

Returns whether the stream is readable.

### `stream.Readable.toWeb(streamReadable[, options])`

<!-- YAML
added: v17.0.0
-->

> Stability: 1 - Experimental

* `streamReadable` {stream.Readable}
* `options` {Object}
  * `strategy` {Object}
    * `highWaterMark` {number} The maximum internal queue size (of the created
      `ReadableStream`) before backpressure is applied in reading from the given
      `stream.Readable`. If no value is provided, it will be taken from the
      given `stream.Readable`.
    * `size` {Function} A function that size of the given chunk of data.
      If no value is provided, the size will be `1` for all the chunks.
      * `chunk` {any}
      * Returns: {number}
* Returns: {ReadableStream}

### `stream.Writable.fromWeb(writableStream[, options])`

<!-- YAML
added: v17.0.0
-->

> Stability: 1 - Experimental

* `writableStream` {WritableStream}
* `options` {Object}
  * `decodeStrings` {boolean}
  * `highWaterMark` {number}
  * `objectMode` {boolean}
  * `signal` {AbortSignal}
* Returns: {stream.Writable}

### `stream.Writable.toWeb(streamWritable)`

<!-- YAML
added: v17.0.0
-->

> Stability: 1 - Experimental

* `streamWritable` {stream.Writable}
* Returns: {WritableStream}

### `stream.Duplex.from(src)`

<!-- YAML
added: v16.8.0
changes:
  - version: v19.5.0
    pr-url: https://github.com/nodejs/node/pull/46190
    description: The `src` argument can now be a `ReadableStream` or
                 `WritableStream`.
-->

* `src` {Stream|Blob|ArrayBuffer|string|Iterable|AsyncIterable|
  AsyncGeneratorFunction|AsyncFunction|Promise|Object|
  ReadableStream|WritableStream}

A utility method for creating duplex streams.

* `Stream` converts writable stream into writable `Duplex` and readable stream
  to `Duplex`.
* `Blob` converts into readable `Duplex`.
* `string` converts into readable `Duplex`.
* `ArrayBuffer` converts into readable `Duplex`.
* `AsyncIterable` converts into a readable `Duplex`. Cannot yield
  `null`.
* `AsyncGeneratorFunction` converts into a readable/writable transform
  `Duplex`. Must take a source `AsyncIterable` as first parameter. Cannot yield
  `null`.
* `AsyncFunction` converts into a writable `Duplex`. Must return
  either `null` or `undefined`
* `Object ({ writable, readable })` converts `readable` and
  `writable` into `Stream` and then combines them into `Duplex` where the
  `Duplex` will write to the `writable` and read from the `readable`.
* `Promise` converts into readable `Duplex`. Value `null` is ignored.
* `ReadableStream` converts into readable `Duplex`.
* `WritableStream` converts into writable `Duplex`.
* Returns: {stream.Duplex}

If an `Iterable` object containing promises is passed as an argument,
it might result in unhandled rejection.

```js
const { Duplex } = require('node:stream');

Duplex.from([
  new Promise((resolve) => setTimeout(resolve('1'), 1500)),
  new Promise((_, reject) => setTimeout(reject(new Error('2')), 1000)), // Unhandled rejection
]);
```

### `stream.Duplex.fromWeb(pair[, options])`

<!-- YAML
added: v17.0.0
-->

> Stability: 1 - Experimental

* `pair` {Object}
  * `readable` {ReadableStream}
  * `writable` {WritableStream}
* `options` {Object}
  * `allowHalfOpen` {boolean}
  * `decodeStrings` {boolean}
  * `encoding` {string}
  * `highWaterMark` {number}
  * `objectMode` {boolean}
  * `signal` {AbortSignal}
* Returns: {stream.Duplex}

```mjs
import { Duplex } from 'node:stream';
import {
  ReadableStream,
  WritableStream,
} from 'node:stream/web';

const readable = new ReadableStream({
  start(controller) {
    controller.enqueue('world');
  },
});

const writable = new WritableStream({
  write(chunk) {
    console.log('writable', chunk);
  },
});

const pair = {
  readable,
  writable,
};
const duplex = Duplex.fromWeb(pair, { encoding: 'utf8', objectMode: true });

duplex.write('hello');

for await (const chunk of duplex) {
  console.log('readable', chunk);
}
```

```cjs
const { Duplex } = require('node:stream');
const {
  ReadableStream,
  WritableStream,
} = require('node:stream/web');

const readable = new ReadableStream({
  start(controller) {
    controller.enqueue('world');
  },
});

const writable = new WritableStream({
  write(chunk) {
    console.log('writable', chunk);
  },
});

const pair = {
  readable,
  writable,
};
const duplex = Duplex.fromWeb(pair, { encoding: 'utf8', objectMode: true });

duplex.write('hello');
duplex.once('readable', () => console.log('readable', duplex.read()));
```

### `stream.Duplex.toWeb(streamDuplex)`

<!-- YAML
added: v17.0.0
-->

> Stability: 1 - Experimental

* `streamDuplex` {stream.Duplex}
* Returns: {Object}
  * `readable` {ReadableStream}
  * `writable` {WritableStream}

```mjs
import { Duplex } from 'node:stream';

const duplex = Duplex({
  objectMode: true,
  read() {
    this.push('world');
    this.push(null);
  },
  write(chunk, encoding, callback) {
    console.log('writable', chunk);
    callback();
  },
});

const { readable, writable } = Duplex.toWeb(duplex);
writable.getWriter().write('hello');

const { value } = await readable.getReader().read();
console.log('readable', value);
```

```cjs
const { Duplex } = require('node:stream');

const duplex = Duplex({
  objectMode: true,
  read() {
    this.push('world');
    this.push(null);
  },
  write(chunk, encoding, callback) {
    console.log('writable', chunk);
    callback();
  },
});

const { readable, writable } = Duplex.toWeb(duplex);
writable.getWriter().write('hello');

readable.getReader().read().then((result) => {
  console.log('readable', result.value);
});
```

### `stream.addAbortSignal(signal, stream)`

<!-- YAML
added: v15.4.0
changes:
  - version: v19.7.0
    pr-url: https://github.com/nodejs/node/pull/46273
    description: Added support for `ReadableStream` and
                 `WritableStream`.
-->

* `signal` {AbortSignal} A signal representing possible cancellation
* `stream` {Stream|ReadableStream|WritableStream} A stream to attach a signal
  to.

Attaches an AbortSignal to a readable or writeable stream. This lets code
control stream destruction using an `AbortController`.

Calling `abort` on the `AbortController` corresponding to the passed
`AbortSignal` will behave the same way as calling `.destroy(new AbortError())`
on the stream, and `controller.error(new AbortError())` for webstreams.

```js
const fs = require('node:fs');

const controller = new AbortController();
const read = addAbortSignal(
  controller.signal,
  fs.createReadStream(('object.json')),
);
// Later, abort the operation closing the stream
controller.abort();
```

Or using an `AbortSignal` with a readable stream as an async iterable:

```js
const controller = new AbortController();
setTimeout(() => controller.abort(), 10_000); // set a timeout
const stream = addAbortSignal(
  controller.signal,
  fs.createReadStream(('object.json')),
);
(async () => {
  try {
    for await (const chunk of stream) {
      await process(chunk);
    }
  } catch (e) {
    if (e.name === 'AbortError') {
      // The operation was cancelled
    } else {
      throw e;
    }
  }
})();
```

Or using an `AbortSignal` with a ReadableStream:

```js
const controller = new AbortController();
const rs = new ReadableStream({
  start(controller) {
    controller.enqueue('hello');
    controller.enqueue('world');
    controller.close();
  },
});

addAbortSignal(controller.signal, rs);

finished(rs, (err) => {
  if (err) {
    if (err.name === 'AbortError') {
      // The operation was cancelled
    }
  }
});

const reader = rs.getReader();

reader.read().then(({ value, done }) => {
  console.log(value); // hello
  console.log(done); // false
  controller.abort();
});
```

### `stream.getDefaultHighWaterMark(objectMode)`

<!-- YAML
added: v19.9.0
-->

* `objectMode` {boolean}
* Returns: {integer}

Returns the default highWaterMark used by streams.
Defaults to `65536` (64 KiB), or `16` for `objectMode`.

### `stream.setDefaultHighWaterMark(objectMode, value)`

<!-- YAML
added: v19.9.0
-->

* `objectMode` {boolean}
* `value` {integer} highWaterMark value

Sets the default highWaterMark used by streams.

## API for stream implementers

<!--type=misc-->

The `node:stream` module API has been designed to make it possible to easily
implement streams using JavaScript's prototypal inheritance model.

First, a stream developer would declare a new JavaScript class that extends one
of the four basic stream classes (`stream.Writable`, `stream.Readable`,
`stream.Duplex`, or `stream.Transform`), making sure they call the appropriate
parent class constructor:

<!-- eslint-disable no-useless-constructor -->

```js
const { Writable } = require('node:stream');

class MyWritable extends Writable {
  constructor({ highWaterMark, ...options }) {
    super({ highWaterMark });
    // ...
  }
}
```

When extending streams, keep in mind what options the user
can and should provide before forwarding these to the base constructor. For
example, if the implementation makes assumptions in regard to the
`autoDestroy` and `emitClose` options, do not allow the
user to override these. Be explicit about what
options are forwarded instead of implicitly forwarding all options.

The new stream class must then implement one or more specific methods, depending
on the type of stream being created, as detailed in the chart below:

| Use-case                                      | Class           | Method(s) to implement                                                                                             |
| --------------------------------------------- | --------------- | ------------------------------------------------------------------------------------------------------------------ |
| Reading only                                  | [`Readable`][]  | [`_read()`][stream-_read]                                                                                          |
| Writing only                                  | [`Writable`][]  | [`_write()`][stream-_write], [`_writev()`][stream-_writev], [`_final()`][stream-_final]                            |
| Reading and writing                           | [`Duplex`][]    | [`_read()`][stream-_read], [`_write()`][stream-_write], [`_writev()`][stream-_writev], [`_final()`][stream-_final] |
| Operate on written data, then read the result | [`Transform`][] | [`_transform()`][stream-_transform], [`_flush()`][stream-_flush], [`_final()`][stream-_final]                      |

The implementation code for a stream should _never_ call the "public" methods
of a stream that are intended for use by consumers (as described in the
[API for stream consumers][] section). Doing so may lead to adverse side effects
in application code consuming the stream.

Avoid overriding public methods such as `write()`, `end()`, `cork()`,
`uncork()`, `read()` and `destroy()`, or emitting internal events such
as `'error'`, `'data'`, `'end'`, `'finish'` and `'close'` through `.emit()`.
Doing so can break current and future stream invariants leading to behavior
and/or compatibility issues with other streams, stream utilities, and user
expectations.

### Simplified construction

<!-- YAML
added: v1.2.0
-->

For many simple cases, it is possible to create a stream without relying on
inheritance. This can be accomplished by directly creating instances of the
`stream.Writable`, `stream.Readable`, `stream.Duplex`, or `stream.Transform`
objects and passing appropriate methods as constructor options.

```js
const { Writable } = require('node:stream');

const myWritable = new Writable({
  construct(callback) {
    // Initialize state and load resources...
  },
  write(chunk, encoding, callback) {
    // ...
  },
  destroy() {
    // Free resources...
  },
});
```

### Implementing a writable stream

The `stream.Writable` class is extended to implement a [`Writable`][] stream.

Custom `Writable` streams _must_ call the `new stream.Writable([options])`
constructor and implement the `writable._write()` and/or `writable._writev()`
method.

#### `new stream.Writable([options])`

<!-- YAML
changes:
  - version: v15.5.0
    pr-url: https://github.com/nodejs/node/pull/36431
    description: support passing in an AbortSignal.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/30623
    description: Change `autoDestroy` option default to `true`.
  - version:
     - v11.2.0
     - v10.16.0
    pr-url: https://github.com/nodejs/node/pull/22795
    description: Add `autoDestroy` option to automatically `destroy()` the
                 stream when it emits `'finish'` or errors.
  - version: v10.0.0
    pr-url: https://github.com/nodejs/node/pull/18438
    description: Add `emitClose` option to specify if `'close'` is emitted on
                 destroy.
-->

* `options` {Object}
  * `highWaterMark` {number} Buffer level when
    [`stream.write()`][stream-write] starts returning `false`. **Default:**
    `16384` (16 KiB), or `16` for `objectMode` streams.
  * `decodeStrings` {boolean} Whether to encode `string`s passed to
    [`stream.write()`][stream-write] to `Buffer`s (with the encoding
    specified in the [`stream.write()`][stream-write] call) before passing
    them to [`stream._write()`][stream-_write]. Other types of data are not
    converted (i.e. `Buffer`s are not decoded into `string`s). Setting to
    false will prevent `string`s from being converted. **Default:** `true`.
  * `defaultEncoding` {string} The default encoding that is used when no
    encoding is specified as an argument to [`stream.write()`][stream-write].
    **Default:** `'utf8'`.
  * `objectMode` {boolean} Whether or not the
    [`stream.write(anyObj)`][stream-write] is a valid operation. When set,
    it becomes possible to write JavaScript values other than string, {Buffer},
    {TypedArray} or {DataView} if supported by the stream implementation.
    **Default:** `false`.
  * `emitClose` {boolean} Whether or not the stream should emit `'close'`
    after it has been destroyed. **Default:** `true`.
  * `write` {Function} Implementation for the
    [`stream._write()`][stream-_write] method.
  * `writev` {Function} Implementation for the
    [`stream._writev()`][stream-_writev] method.
  * `destroy` {Function} Implementation for the
    [`stream._destroy()`][writable-_destroy] method.
  * `final` {Function} Implementation for the
    [`stream._final()`][stream-_final] method.
  * `construct` {Function} Implementation for the
    [`stream._construct()`][writable-_construct] method.
  * `autoDestroy` {boolean} Whether this stream should automatically call
    `.destroy()` on itself after ending. **Default:** `true`.
  * `signal` {AbortSignal} A signal representing possible cancellation.

<!-- eslint-disable no-useless-constructor -->

```js
const { Writable } = require('node:stream');

class MyWritable extends Writable {
  constructor(options) {
    // Calls the stream.Writable() constructor.
    super(options);
    // ...
  }
}
```

Or, when using pre-ES6 style constructors:

```js
const { Writable } = require('node:stream');
const util = require('node:util');

function MyWritable(options) {
  if (!(this instanceof MyWritable))
    return new MyWritable(options);
  Writable.call(this, options);
}
util.inherits(MyWritable, Writable);
```

Or, using the simplified constructor approach:

```js
const { Writable } = require('node:stream');

const myWritable = new Writable({
  write(chunk, encoding, callback) {
    // ...
  },
  writev(chunks, callback) {
    // ...
  },
});
```

Calling `abort` on the `AbortController` corresponding to the passed
`AbortSignal` will behave the same way as calling `.destroy(new AbortError())`
on the writeable stream.

```js
const { Writable } = require('node:stream');

const controller = new AbortController();
const myWritable = new Writable({
  write(chunk, encoding, callback) {
    // ...
  },
  writev(chunks, callback) {
    // ...
  },
  signal: controller.signal,
});
// Later, abort the operation closing the stream
controller.abort();
```

#### `writable._construct(callback)`

<!-- YAML
added: v15.0.0
-->

* `callback` {Function} Call this function (optionally with an error
  argument) when the stream has finished initializing.

The `_construct()` method MUST NOT be called directly. It may be implemented
by child classes, and if so, will be called by the internal `Writable`
class methods only.

This optional function will be called in a tick after the stream constructor
has returned, delaying any `_write()`, `_final()` and `_destroy()` calls until
`callback` is called. This is useful to initialize state or asynchronously
initialize resources before the stream can be used.

```js
const { Writable } = require('node:stream');
const fs = require('node:fs');

class WriteStream extends Writable {
  constructor(filename) {
    super();
    this.filename = filename;
    this.fd = null;
  }
  _construct(callback) {
    fs.open(this.filename, (err, fd) => {
      if (err) {
        callback(err);
      } else {
        this.fd = fd;
        callback();
      }
    });
  }
  _write(chunk, encoding, callback) {
    fs.write(this.fd, chunk, callback);
  }
  _destroy(err, callback) {
    if (this.fd) {
      fs.close(this.fd, (er) => callback(er || err));
    } else {
      callback(err);
    }
  }
}
```

#### `writable._write(chunk, encoding, callback)`

<!-- YAML
changes:
  - version: v12.11.0
    pr-url: https://github.com/nodejs/node/pull/29639
    description: _write() is optional when providing _writev().
-->

* `chunk` {Buffer|string|any} The `Buffer` to be written, converted from the
  `string` passed to [`stream.write()`][stream-write]. If the stream's
  `decodeStrings` option is `false` or the stream is operating in object mode,
  the chunk will not be converted & will be whatever was passed to
  [`stream.write()`][stream-write].
* `encoding` {string} If the chunk is a string, then `encoding` is the
  character encoding of that string. If chunk is a `Buffer`, or if the
  stream is operating in object mode, `encoding` may be ignored.
* `callback` {Function} Call this function (optionally with an error
  argument) when processing is complete for the supplied chunk.

All `Writable` stream implementations must provide a
[`writable._write()`][stream-_write] and/or
[`writable._writev()`][stream-_writev] method to send data to the underlying
resource.

[`Transform`][] streams provide their own implementation of the
[`writable._write()`][stream-_write].

This function MUST NOT be called by application code directly. It should be
implemented by child classes, and called by the internal `Writable` class
methods only.

The `callback` function must be called synchronously inside of
`writable._write()` or asynchronously (i.e. different tick) to signal either
that the write completed successfully or failed with an error.
The first argument passed to the `callback` must be the `Error` object if the
call failed or `null` if the write succeeded.

All calls to `writable.write()` that occur between the time `writable._write()`
is called and the `callback` is called will cause the written data to be
buffered. When the `callback` is invoked, the stream might emit a [`'drain'`][]
event. If a stream implementation is capable of processing multiple chunks of
data at once, the `writable._writev()` method should be implemented.

If the `decodeStrings` property is explicitly set to `false` in the constructor
options, then `chunk` will remain the same object that is passed to `.write()`,
and may be a string rather than a `Buffer`. This is to support implementations
that have an optimized handling for certain string data encodings. In that case,
the `encoding` argument will indicate the character encoding of the string.
Otherwise, the `encoding` argument can be safely ignored.

The `writable._write()` method is prefixed with an underscore because it is
internal to the class that defines it, and should never be called directly by
user programs.

#### `writable._writev(chunks, callback)`

* `chunks` {Object\[]} The data to be written. The value is an array of {Object}
  that each represent a discrete chunk of data to write. The properties of
  these objects are:
  * `chunk` {Buffer|string} A buffer instance or string containing the data to
    be written. The `chunk` will be a string if the `Writable` was created with
    the `decodeStrings` option set to `false` and a string was passed to `write()`.
  * `encoding` {string} The character encoding of the `chunk`. If `chunk` is
    a `Buffer`, the `encoding` will be `'buffer'`.
* `callback` {Function} A callback function (optionally with an error
  argument) to be invoked when processing is complete for the supplied chunks.

This function MUST NOT be called by application code directly. It should be
implemented by child classes, and called by the internal `Writable` class
methods only.

The `writable._writev()` method may be implemented in addition or alternatively
to `writable._write()` in stream implementations that are capable of processing
multiple chunks of data at once. If implemented and if there is buffered data
from previous writes, `_writev()` will be called instead of `_write()`.

The `writable._writev()` method is prefixed with an underscore because it is
internal to the class that defines it, and should never be called directly by
user programs.

#### `writable._destroy(err, callback)`

<!-- YAML
added: v8.0.0
-->

* `err` {Error} A possible error.
* `callback` {Function} A callback function that takes an optional error
  argument.

The `_destroy()` method is called by [`writable.destroy()`][writable-destroy].
It can be overridden by child classes but it **must not** be called directly.
Furthermore, the `callback` should not be mixed with async/await
once it is executed when a promise is resolved.

#### `writable._final(callback)`

<!-- YAML
added: v8.0.0
-->

* `callback` {Function} Call this function (optionally with an error
  argument) when finished writing any remaining data.

The `_final()` method **must not** be called directly. It may be implemented
by child classes, and if so, will be called by the internal `Writable`
class methods only.

This optional function will be called before the stream closes, delaying the
`'finish'` event until `callback` is called. This is useful to close resources
or write buffered data before a stream ends.

#### Errors while writing

Errors occurring during the processing of the [`writable._write()`][],
[`writable._writev()`][] and [`writable._final()`][] methods must be propagated
by invoking the callback and passing the error as the first argument.
Throwing an `Error` from within these methods or manually emitting an `'error'`
event results in undefined behavior.

If a `Readable` stream pipes into a `Writable` stream when `Writable` emits an
error, the `Readable` stream will be unpiped.

```js
const { Writable } = require('node:stream');

const myWritable = new Writable({
  write(chunk, encoding, callback) {
    if (chunk.toString().indexOf('a') >= 0) {
      callback(new Error('chunk is invalid'));
    } else {
      callback();
    }
  },
});
```

#### An example writable stream

The following illustrates a rather simplistic (and somewhat pointless) custom
`Writable` stream implementation. While this specific `Writable` stream instance
is not of any real particular usefulness, the example illustrates each of the
required elements of a custom [`Writable`][] stream instance:

```js
const { Writable } = require('node:stream');

class MyWritable extends Writable {
  _write(chunk, encoding, callback) {
    if (chunk.toString().indexOf('a') >= 0) {
      callback(new Error('chunk is invalid'));
    } else {
      callback();
    }
  }
}
```

#### Decoding buffers in a writable stream

Decoding buffers is a common task, for instance, when using transformers whose
input is a string. This is not a trivial process when using multi-byte
characters encoding, such as UTF-8. The following example shows how to decode
multi-byte strings using `StringDecoder` and [`Writable`][].

```js
const { Writable } = require('node:stream');
const { StringDecoder } = require('node:string_decoder');

class StringWritable extends Writable {
  constructor(options) {
    super(options);
    this._decoder = new StringDecoder(options && options.defaultEncoding);
    this.data = '';
  }
  _write(chunk, encoding, callback) {
    if (encoding === 'buffer') {
      chunk = this._decoder.write(chunk);
    }
    this.data += chunk;
    callback();
  }
  _final(callback) {
    this.data += this._decoder.end();
    callback();
  }
}

const euro = [[0xE2, 0x82], [0xAC]].map(Buffer.from);
const w = new StringWritable();

w.write('currency: ');
w.write(euro[0]);
w.end(euro[1]);

console.log(w.data); // currency: €
```

### Implementing a readable stream

The `stream.Readable` class is extended to implement a [`Readable`][] stream.

Custom `Readable` streams _must_ call the `new stream.Readable([options])`
constructor and implement the [`readable._read()`][] method.

#### `new stream.Readable([options])`

<!-- YAML
changes:
  - version: v15.5.0
    pr-url: https://github.com/nodejs/node/pull/36431
    description: support passing in an AbortSignal.
  - version: v14.0.0
    pr-url: https://github.com/nodejs/node/pull/30623
    description: Change `autoDestroy` option default to `true`.
  - version:
     - v11.2.0
     - v10.16.0
    pr-url: https://github.com/nodejs/node/pull/22795
    description: Add `autoDestroy` option to automatically `destroy()` the
                 stream when it emits `'end'` or errors.
-->

* `options` {Object}
  * `highWaterMark` {number} The maximum [number of bytes][hwm-gotcha] to store
    in the internal buffer before ceasing to read from the underlying resource.
    **Default:** `16384` (16 KiB), or `16` for `objectMode` streams.
  * `encoding` {string} If specified, then buffers will be decoded to
    strings using the specified encoding. **Default:** `null`.
  * `objectMode` {boolean} Whether this stream should behave
    as a stream of objects. Meaning that [`stream.read(n)`][stream-read] returns
    a single value instead of a `Buffer` of size `n`. **Default:** `false`.
  * `emitClose` {boolean} Whether or not the stream should emit `'close'`
    after it has been destroyed. **Default:** `true`.
  * `read` {Function} Implementation for the [`stream._read()`][stream-_read]
    method.
  * `destroy` {Function} Implementation for the
    [`stream._destroy()`][readable-_destroy] method.
  * `construct` {Function} Implementation for the
    [`stream._construct()`][readable-_construct] method.
  * `autoDestroy` {boolean} Whether this stream should automatically call
    `.destroy()` on itself after ending. **Default:** `true`.
  * `signal` {AbortSignal} A signal representing possible cancellation.

<!-- eslint-disable no-useless-constructor -->

```js
const { Readable } = require('node:stream');

class MyReadable extends Readable {
  constructor(options) {
    // Calls the stream.Readable(options) constructor.
    super(options);
    // ...
  }
}
```

Or, when using pre-ES6 style constructors:

```js
const { Readable } = require('node:stream');
const util = require('node:util');

function MyReadable(options) {
  if (!(this instanceof MyReadable))
    return new MyReadable(options);
  Readable.call(this, options);
}
util.inherits(MyReadable, Readable);
```

Or, using the simplified constructor approach:

```js
const { Readable } = require('node:stream');

const myReadable = new Readable({
  read(size) {
    // ...
  },
});
```

Calling `abort` on the `AbortController` corresponding to the passed
`AbortSignal` will behave the same way as calling `.destroy(new AbortError())`
on the readable created.

```js
const { Readable } = require('node:stream');
const controller = new AbortController();
const read = new Readable({
  read(size) {
    // ...
  },
  signal: controller.signal,
});
// Later, abort the operation closing the stream
controller.abort();
```

#### `readable._construct(callback)`

<!-- YAML
added: v15.0.0
-->

* `callback` {Function} Call this function (optionally with an error
  argument) when the stream has finished initializing.

The `_construct()` method MUST NOT be called directly. It may be implemented
by child classes, and if so, will be called by the internal `Readable`
class methods only.

This optional function will be scheduled in the next tick by the stream
constructor, delaying any `_read()` and `_destroy()` calls until `callback` is
called. This is useful to initialize state or asynchronously initialize
resources before the stream can be used.

```js
const { Readable } = require('node:stream');
const fs = require('node:fs');

class ReadStream extends Readable {
  constructor(filename) {
    super();
    this.filename = filename;
    this.fd = null;
  }
  _construct(callback) {
    fs.open(this.filename, (err, fd) => {
      if (err) {
        callback(err);
      } else {
        this.fd = fd;
        callback();
      }
    });
  }
  _read(n) {
    const buf = Buffer.alloc(n);
    fs.read(this.fd, buf, 0, n, null, (err, bytesRead) => {
      if (err) {
        this.destroy(err);
      } else {
        this.push(bytesRead > 0 ? buf.slice(0, bytesRead) : null);
      }
    });
  }
  _destroy(err, callback) {
    if (this.fd) {
      fs.close(this.fd, (er) => callback(er || err));
    } else {
      callback(err);
    }
  }
}
```

#### `readable._read(size)`

<!-- YAML
added: v0.9.4
-->

* `size` {number} Number of bytes to read asynchronously

This function MUST NOT be called by application code directly. It should be
implemented by child classes, and called by the internal `Readable` class
methods only.

All `Readable` stream implementations must provide an implementation of the
[`readable._read()`][] method to fetch data from the underlying resource.

When [`readable._read()`][] is called, if data is available from the resource,
the implementation should begin pushing that data into the read queue using the
[`this.push(dataChunk)`][stream-push] method. `_read()` will be called again
after each call to [`this.push(dataChunk)`][stream-push] once the stream is
ready to accept more data. `_read()` may continue reading from the resource and
pushing data until `readable.push()` returns `false`. Only when `_read()` is
called again after it has stopped should it resume pushing additional data into
the queue.

Once the [`readable._read()`][] method has been called, it will not be called
again until more data is pushed through the [`readable.push()`][stream-push]
method. Empty data such as empty buffers and strings will not cause
[`readable._read()`][] to be called.

The `size` argument is advisory. For implementations where a "read" is a
single operation that returns data can use the `size` argument to determine how
much data to fetch. Other implementations may ignore this argument and simply
provide data whenever it becomes available. There is no need to "wait" until
`size` bytes are available before calling [`stream.push(chunk)`][stream-push].

The [`readable._read()`][] method is prefixed with an underscore because it is
internal to the class that defines it, and should never be called directly by
user programs.

#### `readable._destroy(err, callback)`

<!-- YAML
added: v8.0.0
-->

* `err` {Error} A possible error.
* `callback` {Function} A callback function that takes an optional error
  argument.

The `_destroy()` method is called by [`readable.destroy()`][readable-destroy].
It can be overridden by child classes but it **must not** be called directly.

#### `readable.push(chunk[, encoding])`

<!-- YAML
changes:
  - version: v20.13.0
    pr-url: https://github.com/nodejs/node/pull/51866
    description: The `chunk` argument can now be a `TypedArray` or `DataView` instance.
  - version: v8.0.0
    pr-url: https://github.com/nodejs/node/pull/11608
    description: The `chunk` argument can now be a `Uint8Array` instance.
-->

* `chunk` {Buffer|TypedArray|DataView|string|null|any} Chunk of data to push
  into the read queue. For streams not operating in object mode, `chunk` must
  be a {string}, {Buffer}, {TypedArray} or {DataView}. For object mode streams,
  `chunk` may be any JavaScript value.
* `encoding` {string} Encoding of string chunks. Must be a valid
  `Buffer` encoding, such as `'utf8'` or `'ascii'`.
* Returns: {boolean} `true` if additional chunks of data may continue to be
  pushed; `false` otherwise.

When `chunk` is a {Buffer}, {TypedArray}, {DataView} or {string}, the `chunk`
of data will be added to the internal queue for users of the stream to consume.
Passing `chunk` as `null` signals the end of the stream (EOF), after which no
more data can be written.

When the `Readable` is operating in paused mode, the data added with
`readable.push()` can be read out by calling the
[`readable.read()`][stream-read] method when the [`'readable'`][] event is
emitted.

When the `Readable` is operating in flowing mode, the data added with
`readable.push()` will be delivered by emitting a `'data'` event.

The `readable.push()` method is designed to be as flexible as possible. For
example, when wrapping a lower-level source that provides some form of
pause/resume mechanism, and a data callback, the low-level source can be wrapped
by the custom `Readable` instance:

```js
// `_source` is an object with readStop() and readStart() methods,
// and an `ondata` member that gets called when it has data, and
// an `onend` member that gets called when the data is over.

class SourceWrapper extends Readable {
  constructor(options) {
    super(options);

    this._source = getLowLevelSourceObject();

    // Every time there's data, push it into the internal buffer.
    this._source.ondata = (chunk) => {
      // If push() returns false, then stop reading from source.
      if (!this.push(chunk))
        this._source.readStop();
    };

    // When the source ends, push the EOF-signaling `null` chunk.
    this._source.onend = () => {
      this.push(null);
    };
  }
  // _read() will be called when the stream wants to pull more data in.
  // The advisory size argument is ignored in this case.
  _read(size) {
    this._source.readStart();
  }
}
```

The `readable.push()` method is used to push the content
into the internal buffer. It can be driven by the [`readable._read()`][] method.

For streams not operating in object mode, if the `chunk` parameter of
`readable.push()` is `undefined`, it will be treated as empty string or
buffer. See [`readable.push('')`][] for more information.

#### Errors while reading

Errors occurring during processing of the [`readable._read()`][] must be
propagated through the [`readable.destroy(err)`][readable-_destroy] method.
Throwing an `Error` from within [`readable._read()`][] or manually emitting an
`'error'` event results in undefined behavior.

```js
const { Readable } = require('node:stream');

const myReadable = new Readable({
  read(size) {
    const err = checkSomeErrorCondition();
    if (err) {
      this.destroy(err);
    } else {
      // Do some work.
    }
  },
});
```

#### An example counting stream

<!--type=example-->

The following is a basic example of a `Readable` stream that emits the numerals
from 1 to 1,000,000 in ascending order, and then ends.

```js
const { Readable } = require('node:stream');

class Counter extends Readable {
  constructor(opt) {
    super(opt);
    this._max = 1000000;
    this._index = 1;
  }

  _read() {
    const i = this._index++;
    if (i > this._max)
      this.push(null);
    else {
      const str = String(i);
      const buf = Buffer.from(str, 'ascii');
      this.push(buf);
    }
  }
}
```

### Implementing a duplex stream

A [`Duplex`][] stream is one that implements both [`Readable`][] and
[`Writable`][], such as a TCP socket connection.

Because JavaScript does not have support for multiple inheritance, the
`stream.Duplex` class is extended to implement a [`Duplex`][] stream (as opposed
to extending the `stream.Readable` _and_ `stream.Writable` classes).

The `stream.Duplex` class prototypically inherits from `stream.Readable` and
parasitically from `stream.Writable`, but `instanceof` will work properly for
both base classes due to overriding [`Symbol.hasInstance`][] on
`stream.Writable`.

Custom `Duplex` streams _must_ call the `new stream.Duplex([options])`
constructor and implement _both_ the [`readable._read()`][] and
`writable._write()` methods.

#### `new stream.Duplex(options)`

<!-- YAML
changes:
  - version: v8.4.0
    pr-url: https://github.com/nodejs/node/pull/14636
    description: The `readableHighWaterMark` and `writableHighWaterMark` options
                 are supported now.
-->

* `options` {Object} Passed to both `Writable` and `Readable`
  constructors. Also has the following fields:
  * `allowHalfOpen` {boolean} If set to `false`, then the stream will
    automatically end the writable side when the readable side ends.
    **Default:** `true`.
  * `readable` {boolean} Sets whether the `Duplex` should be readable.
    **Default:** `true`.
  * `writable` {boolean} Sets whether the `Duplex` should be writable.
    **Default:** `true`.
  * `readableObjectMode` {boolean} Sets `objectMode` for readable side of the
    stream. Has no effect if `objectMode` is `true`. **Default:** `false`.
  * `writableObjectMode` {boolean} Sets `objectMode` for writable side of the
    stream. Has no effect if `objectMode` is `true`. **Default:** `false`.
  * `readableHighWaterMark` {number} Sets `highWaterMark` for the readable side
    of the stream. Has no effect if `highWaterMark` is provided.
  * `writableHighWaterMark` {number} Sets `highWaterMark` for the writable side
    of the stream. Has no effect if `highWaterMark` is provided.

<!-- eslint-disable no-useless-constructor -->

```js
const { Duplex } = require('node:stream');

class MyDuplex extends Duplex {
  constructor(options) {
    super(options);
    // ...
  }
}
```

Or, when using pre-ES6 style constructors:

```js
const { Duplex } = require('node:stream');
const util = require('node:util');

function MyDuplex(options) {
  if (!(this instanceof MyDuplex))
    return new MyDuplex(options);
  Duplex.call(this, options);
}
util.inherits(MyDuplex, Duplex);
```

Or, using the simplified constructor approach:

```js
const { Duplex } = require('node:stream');

const myDuplex = new Duplex({
  read(size) {
    // ...
  },
  write(chunk, encoding, callback) {
    // ...
  },
});
```

When using pipeline:

```js
const { Transform, pipeline } = require('node:stream');
const fs = require('node:fs');

pipeline(
  fs.createReadStream('object.json')
    .setEncoding('utf8'),
  new Transform({
    decodeStrings: false, // Accept string input rather than Buffers
    construct(callback) {
      this.data = '';
      callback();
    },
    transform(chunk, encoding, callback) {
      this.data += chunk;
      callback();
    },
    flush(callback) {
      try {
        // Make sure is valid json.
        JSON.parse(this.data);
        this.push(this.data);
        callback();
      } catch (err) {
        callback(err);
      }
    },
  }),
  fs.createWriteStream('valid-object.json'),
  (err) => {
    if (err) {
      console.error('failed', err);
    } else {
      console.log('completed');
    }
  },
);
```

#### An example duplex stream

The following illustrates a simple example of a `Duplex` stream that wraps a
hypothetical lower-level source object to which data can be written, and
from which data can be read, albeit using an API that is not compatible with
Node.js streams.
The following illustrates a simple example of a `Duplex` stream that buffers
incoming written data via the [`Writable`][] interface that is read back out
via the [`Readable`][] interface.

```js
const { Duplex } = require('node:stream');
const kSource = Symbol('source');

class MyDuplex extends Duplex {
  constructor(source, options) {
    super(options);
    this[kSource] = source;
  }

  _write(chunk, encoding, callback) {
    // The underlying source only deals with strings.
    if (Buffer.isBuffer(chunk))
      chunk = chunk.toString();
    this[kSource].writeSomeData(chunk);
    callback();
  }

  _read(size) {
    this[kSource].fetchSomeData(size, (data, encoding) => {
      this.push(Buffer.from(data, encoding));
    });
  }
}
```

The most important aspect of a `Duplex` stream is that the `Readable` and
`Writable` sides operate independently of one another despite co-existing within
a single object instance.

#### Object mode duplex streams

For `Duplex` streams, `objectMode` can be set exclusively for either the
`Readable` or `Writable` side using the `readableObjectMode` and
`writableObjectMode` options respectively.

In the following example, for instance, a new `Transform` stream (which is a
type of [`Duplex`][] stream) is created that has an object mode `Writable` side
that accepts JavaScript numbers that are converted to hexadecimal strings on
the `Readable` side.

```js
const { Transform } = require('node:stream');

// All Transform streams are also Duplex Streams.
const myTransform = new Transform({
  writableObjectMode: true,

  transform(chunk, encoding, callback) {
    // Coerce the chunk to a number if necessary.
    chunk |= 0;

    // Transform the chunk into something else.
    const data = chunk.toString(16);

    // Push the data onto the readable queue.
    callback(null, '0'.repeat(data.length % 2) + data);
  },
});

myTransform.setEncoding('ascii');
myTransform.on('data', (chunk) => console.log(chunk));

myTransform.write(1);
// Prints: 01
myTransform.write(10);
// Prints: 0a
myTransform.write(100);
// Prints: 64
```

### Implementing a transform stream

A [`Transform`][] stream is a [`Duplex`][] stream where the output is computed
in some way from the input. Examples include [zlib][] streams or [crypto][]
streams that compress, encrypt, or decrypt data.

There is no requirement that the output be the same size as the input, the same
number of chunks, or arrive at the same time. For example, a `Hash` stream will
only ever have a single chunk of output which is provided when the input is
ended. A `zlib` stream will produce output that is either much smaller or much
larger than its input.

The `stream.Transform` class is extended to implement a [`Transform`][] stream.

The `stream.Transform` class prototypically inherits from `stream.Duplex` and
implements its own versions of the `writable._write()` and
[`readable._read()`][] methods. Custom `Transform` implementations _must_
implement the [`transform._transform()`][stream-_transform] method and _may_
also implement the [`transform._flush()`][stream-_flush] method.

Care must be taken when using `Transform` streams in that data written to the
stream can cause the `Writable` side of the stream to become paused if the
output on the `Readable` side is not consumed.

#### `new stream.Transform([options])`

* `options` {Object} Passed to both `Writable` and `Readable`
  constructors. Also has the following fields:
  * `transform` {Function} Implementation for the
    [`stream._transform()`][stream-_transform] method.
  * `flush` {Function} Implementation for the [`stream._flush()`][stream-_flush]
    method.

<!-- eslint-disable no-useless-constructor -->

```js
const { Transform } = require('node:stream');

class MyTransform extends Transform {
  constructor(options) {
    super(options);
    // ...
  }
}
```

Or, when using pre-ES6 style constructors:

```js
const { Transform } = require('node:stream');
const util = require('node:util');

function MyTransform(options) {
  if (!(this instanceof MyTransform))
    return new MyTransform(options);
  Transform.call(this, options);
}
util.inherits(MyTransform, Transform);
```

Or, using the simplified constructor approach:

```js
const { Transform } = require('node:stream');

const myTransform = new Transform({
  transform(chunk, encoding, callback) {
    // ...
  },
});
```

#### Event: `'end'`

The [`'end'`][] event is from the `stream.Readable` class. The `'end'` event is
emitted after all data has been output, which occurs after the callback in
[`transform._flush()`][stream-_flush] has been called. In the case of an error,
`'end'` should not be emitted.

#### Event: `'finish'`

The [`'finish'`][] event is from the `stream.Writable` class. The `'finish'`
event is emitted after [`stream.end()`][stream-end] is called and all chunks
have been processed by [`stream._transform()`][stream-_transform]. In the case
of an error, `'finish'` should not be emitted.

#### `transform._flush(callback)`

* `callback` {Function} A callback function (optionally with an error
  argument and data) to be called when remaining data has been flushed.

This function MUST NOT be called by application code directly. It should be
implemented by child classes, and called by the internal `Readable` class
methods only.

In some cases, a transform operation may need to emit an additional bit of
data at the end of the stream. For example, a `zlib` compression stream will
store an amount of internal state used to optimally compress the output. When
the stream ends, however, that additional data needs to be flushed so that the
compressed data will be complete.

Custom [`Transform`][] implementations _may_ implement the `transform._flush()`
method. This will be called when there is no more written data to be consumed,
but before the [`'end'`][] event is emitted signaling the end of the
[`Readable`][] stream.

Within the `transform._flush()` implementation, the `transform.push()` method
may be called zero or more times, as appropriate. The `callback` function must
be called when the flush operation is complete.

The `transform._flush()` method is prefixed with an underscore because it is
internal to the class that defines it, and should never be called directly by
user programs.

#### `transform._transform(chunk, encoding, callback)`

* `chunk` {Buffer|string|any} The `Buffer` to be transformed, converted from
  the `string` passed to [`stream.write()`][stream-write]. If the stream's
  `decodeStrings` option is `false` or the stream is operating in object mode,
  the chunk will not be converted & will be whatever was passed to
  [`stream.write()`][stream-write].
* `encoding` {string} If the chunk is a string, then this is the
  encoding type. If chunk is a buffer, then this is the special
  value `'buffer'`. Ignore it in that case.
* `callback` {Function} A callback function (optionally with an error
  argument and data) to be called after the supplied `chunk` has been
  processed.

This function MUST NOT be called by application code directly. It should be
implemented by child classes, and called by the internal `Readable` class
methods only.

All `Transform` stream implementations must provide a `_transform()`
method to accept input and produce output. The `transform._transform()`
implementation handles the bytes being written, computes an output, then passes
that output off to the readable portion using the `transform.push()` method.

The `transform.push()` method may be called zero or more times to generate
output from a single input chunk, depending on how much is to be output
as a result of the chunk.

It is possible that no output is generated from any given chunk of input data.

The `callback` function must be called only when the current chunk is completely
consumed. The first argument passed to the `callback` must be an `Error` object
if an error occurred while processing the input or `null` otherwise. If a second
argument is passed to the `callback`, it will be forwarded on to the
`transform.push()` method, but only if the first argument is falsy. In other
words, the following are equivalent:

```js
transform.prototype._transform = function(data, encoding, callback) {
  this.push(data);
  callback();
};

transform.prototype._transform = function(data, encoding, callback) {
  callback(null, data);
};
```

The `transform._transform()` method is prefixed with an underscore because it
is internal to the class that defines it, and should never be called directly by
user programs.

`transform._transform()` is never called in parallel; streams implement a
queue mechanism, and to receive the next chunk, `callback` must be
called, either synchronously or asynchronously.

#### Class: `stream.PassThrough`

The `stream.PassThrough` class is a trivial implementation of a [`Transform`][]
stream that simply passes the input bytes across to the output. Its purpose is
primarily for examples and testing, but there are some use cases where
`stream.PassThrough` is useful as a building block for novel sorts of streams.

## Additional notes

<!--type=misc-->

### Streams compatibility with async generators and async iterators

With the support of async generators and iterators in JavaScript, async
generators are effectively a first-class language-level stream construct at
this point.

Some common interop cases of using Node.js streams with async generators
and async iterators are provided below.

#### Consuming readable streams with async iterators

```js
(async function() {
  for await (const chunk of readable) {
    console.log(chunk);
  }
})();
```

Async iterators register a permanent error handler on the stream to prevent any
unhandled post-destroy errors.

#### Creating readable streams with async generators

A Node.js readable stream can be created from an asynchronous generator using
the `Readable.from()` utility method:

```js
const { Readable } = require('node:stream');

const ac = new AbortController();
const signal = ac.signal;

async function * generate() {
  yield 'a';
  await someLongRunningFn({ signal });
  yield 'b';
  yield 'c';
}

const readable = Readable.from(generate());
readable.on('close', () => {
  ac.abort();
});

readable.on('data', (chunk) => {
  console.log(chunk);
});
```

#### Piping to writable streams from async iterators

When writing to a writable stream from an async iterator, ensure correct
handling of backpressure and errors. [`stream.pipeline()`][] abstracts away
the handling of backpressure and backpressure-related errors:

```js
const fs = require('node:fs');
const { pipeline } = require('node:stream');
const { pipeline: pipelinePromise } = require('node:stream/promises');

const writable = fs.createWriteStream('./file');

const ac = new AbortController();
const signal = ac.signal;

const iterator = createIterator({ signal });

// Callback Pattern
pipeline(iterator, writable, (err, value) => {
  if (err) {
    console.error(err);
  } else {
    console.log(value, 'value returned');
  }
}).on('close', () => {
  ac.abort();
});

// Promise Pattern
pipelinePromise(iterator, writable)
  .then((value) => {
    console.log(value, 'value returned');
  })
  .catch((err) => {
    console.error(err);
    ac.abort();
  });
```

<!--type=misc-->

### Compatibility with older Node.js versions

<!--type=misc-->

Prior to Node.js 0.10, the `Readable` stream interface was simpler, but also
less powerful and less useful.

* Rather than waiting for calls to the [`stream.read()`][stream-read] method,
  [`'data'`][] events would begin emitting immediately. Applications that
  would need to perform some amount of work to decide how to handle data
  were required to store read data into buffers so the data would not be lost.
* The [`stream.pause()`][stream-pause] method was advisory, rather than
  guaranteed. This meant that it was still necessary to be prepared to receive
  [`'data'`][] events _even when the stream was in a paused state_.

In Node.js 0.10, the [`Readable`][] class was added. For backward
compatibility with older Node.js programs, `Readable` streams switch into
"flowing mode" when a [`'data'`][] event handler is added, or when the
[`stream.resume()`][stream-resume] method is called. The effect is that, even
when not using the new [`stream.read()`][stream-read] method and
[`'readable'`][] event, it is no longer necessary to worry about losing
[`'data'`][] chunks.

While most applications will continue to function normally, this introduces an
edge case in the following conditions:

* No [`'data'`][] event listener is added.
* The [`stream.resume()`][stream-resume] method is never called.
* The stream is not piped to any writable destination.

For example, consider the following code:

```js
// WARNING!  BROKEN!
net.createServer((socket) => {

  // We add an 'end' listener, but never consume the data.
  socket.on('end', () => {
    // It will never get here.
    socket.end('The message was received but was not processed.\n');
  });

}).listen(1337);
```

Prior to Node.js 0.10, the incoming message data would be simply discarded.
However, in Node.js 0.10 and beyond, the socket remains paused forever.

The workaround in this situation is to call the
[`stream.resume()`][stream-resume] method to begin the flow of data:

```js
// Workaround.
net.createServer((socket) => {
  socket.on('end', () => {
    socket.end('The message was received but was not processed.\n');
  });

  // Start the flow of data, discarding it.
  socket.resume();
}).listen(1337);
```

In addition to new `Readable` streams switching into flowing mode,
pre-0.10 style streams can be wrapped in a `Readable` class using the
[`readable.wrap()`][`stream.wrap()`] method.

### `readable.read(0)`

There are some cases where it is necessary to trigger a refresh of the
underlying readable stream mechanisms, without actually consuming any
data. In such cases, it is possible to call `readable.read(0)`, which will
always return `null`.

If the internal read buffer is below the `highWaterMark`, and the
stream is not currently reading, then calling `stream.read(0)` will trigger
a low-level [`stream._read()`][stream-_read] call.

While most applications will almost never need to do this, there are
situations within Node.js where this is done, particularly in the
`Readable` stream class internals.

### `readable.push('')`

Use of `readable.push('')` is not recommended.

Pushing a zero-byte {string}, {Buffer}, {TypedArray} or {DataView} to a stream
that is not in object mode has an interesting side effect.
Because it _is_ a call to
[`readable.push()`][stream-push], the call will end the reading process.
However, because the argument is an empty string, no data is added to the
readable buffer so there is nothing for a user to consume.

### `highWaterMark` discrepancy after calling `readable.setEncoding()`

The use of `readable.setEncoding()` will change the behavior of how the
`highWaterMark` operates in non-object mode.

Typically, the size of the current buffer is measured against the
`highWaterMark` in _bytes_. However, after `setEncoding()` is called, the
comparison function will begin to measure the buffer's size in _characters_.

This is not a problem in common cases with `latin1` or `ascii`. But it is
advised to be mindful about this behavior when working with strings that could
contain multi-byte characters.

[API for stream consumers]: #api-for-stream-consumers
[API for stream implementers]: #api-for-stream-implementers
[Compatibility]: #compatibility-with-older-nodejs-versions
[HTTP requests, on the client]: http.md#class-httpclientrequest
[HTTP responses, on the server]: http.md#class-httpserverresponse
[TCP sockets]: net.md#class-netsocket
[Three states]: #three-states
[`'data'`]: #event-data
[`'drain'`]: #event-drain
[`'end'`]: #event-end
[`'finish'`]: #event-finish
[`'readable'`]: #event-readable
[`Duplex`]: #class-streamduplex
[`EventEmitter`]: events.md#class-eventemitter
[`Readable`]: #class-streamreadable
[`Symbol.hasInstance`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol/hasInstance
[`Transform`]: #class-streamtransform
[`Writable`]: #class-streamwritable
[`fs.createReadStream()`]: fs.md#fscreatereadstreampath-options
[`fs.createWriteStream()`]: fs.md#fscreatewritestreampath-options
[`net.Socket`]: net.md#class-netsocket
[`process.stderr`]: process.md#processstderr
[`process.stdin`]: process.md#processstdin
[`process.stdout`]: process.md#processstdout
[`readable._read()`]: #readable_readsize
[`readable.compose(stream)`]: #readablecomposestream-options
[`readable.map`]: #readablemapfn-options
[`readable.push('')`]: #readablepush
[`readable.setEncoding()`]: #readablesetencodingencoding
[`stream.Readable.from()`]: #streamreadablefromiterable-options
[`stream.addAbortSignal()`]: #streamaddabortsignalsignal-stream
[`stream.compose`]: #streamcomposestreams
[`stream.cork()`]: #writablecork
[`stream.duplexPair()`]: #streamduplexpairoptions
[`stream.finished()`]: #streamfinishedstream-options-callback
[`stream.pipe()`]: #readablepipedestination-options
[`stream.pipeline()`]: #streampipelinesource-transforms-destination-callback
[`stream.uncork()`]: #writableuncork
[`stream.unpipe()`]: #readableunpipedestination
[`stream.wrap()`]: #readablewrapstream
[`writable._final()`]: #writable_finalcallback
[`writable._write()`]: #writable_writechunk-encoding-callback
[`writable._writev()`]: #writable_writevchunks-callback
[`writable.cork()`]: #writablecork
[`writable.end()`]: #writableendchunk-encoding-callback
[`writable.uncork()`]: #writableuncork
[`writable.writableFinished`]: #writablewritablefinished
[`zlib.createDeflate()`]: zlib.md#zlibcreatedeflateoptions
[child process stdin]: child_process.md#subprocessstdin
[child process stdout and stderr]: child_process.md#subprocessstdout
[crypto]: crypto.md
[fs read streams]: fs.md#class-fsreadstream
[fs write streams]: fs.md#class-fswritestream
[http-incoming-message]: http.md#class-httpincomingmessage
[hwm-gotcha]: #highwatermark-discrepancy-after-calling-readablesetencoding
[object-mode]: #object-mode
[readable-_construct]: #readable_constructcallback
[readable-_destroy]: #readable_destroyerr-callback
[readable-destroy]: #readabledestroyerror
[stream-_final]: #writable_finalcallback
[stream-_flush]: #transform_flushcallback
[stream-_read]: #readable_readsize
[stream-_transform]: #transform_transformchunk-encoding-callback
[stream-_write]: #writable_writechunk-encoding-callback
[stream-_writev]: #writable_writevchunks-callback
[stream-end]: #writableendchunk-encoding-callback
[stream-finished]: #streamfinishedstream-options-callback
[stream-finished-promise]: #streamfinishedstream-options
[stream-pause]: #readablepause
[stream-pipeline]: #streampipelinesource-transforms-destination-callback
[stream-pipeline-promise]: #streampipelinesource-transforms-destination-options
[stream-push]: #readablepushchunk-encoding
[stream-read]: #readablereadsize
[stream-resume]: #readableresume
[stream-uncork]: #writableuncork
[stream-write]: #writablewritechunk-encoding-callback
[writable-_construct]: #writable_constructcallback
[writable-_destroy]: #writable_destroyerr-callback
[writable-destroy]: #writabledestroyerror
[writable-new]: #new-streamwritableoptions
[zlib]: zlib.md

Anon7 - 2022
AnonSec Team