Server IP : 85.214.239.14 / Your IP : 18.116.80.252 Web Server : Apache/2.4.62 (Debian) System : Linux h2886529.stratoserver.net 4.9.0 #1 SMP Tue Jan 9 19:45:01 MSK 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.18 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : OFF | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : OFF Directory : /lib/python3/dist-packages/ansible_collections/google/cloud/plugins/modules/ |
Upload File : |
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** Type: MMv1 *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_mlengine_version description: - Each version is a trained model deployed in the cloud, ready to handle prediction requests. A model can have multiple versions . short_description: Creates a GCP Version author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: state: description: - Whether the given object should exist in GCP choices: - present - absent default: present type: str name: description: - The name specified for the version when it was created. - The version name must be unique within the model it is created in. required: true type: str description: description: - The description specified for the version when it was created. required: false type: str deployment_uri: description: - The Cloud Storage location of the trained model used to create the version. required: true type: str runtime_version: description: - The AI Platform runtime version to use for this deployment. required: false type: str machine_type: description: - The type of machine on which to serve the model. Currently only applies to online prediction service. - 'Some valid choices include: "mls1-c1-m2", "mls1-c4-m2"' required: false type: str labels: description: - One or more labels that you can add, to organize your model versions. required: false type: dict framework: description: - The machine learning framework AI Platform uses to train this version of the model. - 'Some valid choices include: "FRAMEWORK_UNSPECIFIED", "TENSORFLOW", "SCIKIT_LEARN", "XGBOOST"' required: false type: str python_version: description: - The version of Python used in prediction. If not set, the default version is '2.7'. Python '3.5' is available when runtimeVersion is set to '1.4' and above. Python '2.7' works with all supported runtime versions. - 'Some valid choices include: "2.7", "3.5"' required: false type: str service_account: description: - Specifies the service account for resource access control. required: false type: str auto_scaling: description: - Automatically scale the number of nodes used to serve the model in response to increases and decreases in traffic. Care should be taken to ramp up traffic according to the model's ability to scale or you will start seeing increases in latency and 429 response codes. required: false type: dict suboptions: min_nodes: description: - The minimum number of nodes to allocate for this mode. required: false type: int manual_scaling: description: - Manually select the number of nodes to use for serving the model. You should generally use autoScaling with an appropriate minNodes instead, but this option is available if you want more predictable billing. Beware that latency and error rates will increase if the traffic exceeds that capability of the system to serve it based on the selected number of nodes. required: false type: dict suboptions: nodes: description: - The number of nodes to allocate for this model. These nodes are always up, starting from the time the model is deployed. required: false type: int prediction_class: description: - The fully qualified name (module_name.class_name) of a class that implements the Predictor interface described in this reference field. The module containing this class should be included in a package provided to the packageUris field. required: false type: str model: description: - The model that this version belongs to. - 'This field represents a link to a Model resource in GCP. It can be specified in two ways. First, you can place a dictionary with key ''name'' and value of your resource''s name Alternatively, you can add `register: name-of-resource` to a gcp_mlengine_model task and then set this model field to "{{ name-of-resource }}"' required: true type: dict is_default: description: - If true, this version will be used to handle prediction requests that do not specify a version. required: false type: bool aliases: - default project: description: - The Google Cloud Platform project to use. type: str auth_kind: description: - The type of credential used. type: str required: true choices: - application - machineaccount - serviceaccount service_account_contents: description: - The contents of a Service Account JSON file, either in a dictionary or as a JSON string that represents it. type: jsonarg service_account_file: description: - The path of a Service Account JSON file if serviceaccount is selected as type. type: path service_account_email: description: - An optional service account email address if machineaccount is selected and the user does not wish to use the default email. type: str scopes: description: - Array of scopes to be used type: list elements: str env_type: description: - Specifies which Ansible environment you're running this module within. - This should not be set unless you know what you're doing. - This only alters the User Agent string for any API requests. type: str ''' EXAMPLES = ''' - name: create a model google.cloud.gcp_mlengine_model: name: model_version description: My model regions: - us-central1 online_prediction_logging: 'true' online_prediction_console_logging: 'true' project: "{{ gcp_project }}" auth_kind: "{{ gcp_cred_kind }}" service_account_file: "{{ gcp_cred_file }}" state: present register: model - name: create a version google.cloud.gcp_mlengine_version: name: "{{ resource_name | replace('-', '_') }}" model: "{{ model }}" runtime_version: 1.13 python_version: 3.5 is_default: 'true' deployment_uri: gs://ansible-cloudml-bucket/ project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" state: present ''' RETURN = ''' name: description: - The name specified for the version when it was created. - The version name must be unique within the model it is created in. returned: success type: str description: description: - The description specified for the version when it was created. returned: success type: str deploymentUri: description: - The Cloud Storage location of the trained model used to create the version. returned: success type: str createTime: description: - The time the version was created. returned: success type: str lastUseTime: description: - The time the version was last used for prediction. returned: success type: str runtimeVersion: description: - The AI Platform runtime version to use for this deployment. returned: success type: str machineType: description: - The type of machine on which to serve the model. Currently only applies to online prediction service. returned: success type: str state: description: - The state of a version. returned: success type: str errorMessage: description: - The details of a failure or cancellation. returned: success type: str packageUris: description: - Cloud Storage paths (gs://…) of packages for custom prediction routines or scikit-learn pipelines with custom code. returned: success type: list labels: description: - One or more labels that you can add, to organize your model versions. returned: success type: dict framework: description: - The machine learning framework AI Platform uses to train this version of the model. returned: success type: str pythonVersion: description: - The version of Python used in prediction. If not set, the default version is '2.7'. Python '3.5' is available when runtimeVersion is set to '1.4' and above. Python '2.7' works with all supported runtime versions. returned: success type: str serviceAccount: description: - Specifies the service account for resource access control. returned: success type: str autoScaling: description: - Automatically scale the number of nodes used to serve the model in response to increases and decreases in traffic. Care should be taken to ramp up traffic according to the model's ability to scale or you will start seeing increases in latency and 429 response codes. returned: success type: complex contains: minNodes: description: - The minimum number of nodes to allocate for this mode. returned: success type: int manualScaling: description: - Manually select the number of nodes to use for serving the model. You should generally use autoScaling with an appropriate minNodes instead, but this option is available if you want more predictable billing. Beware that latency and error rates will increase if the traffic exceeds that capability of the system to serve it based on the selected number of nodes. returned: success type: complex contains: nodes: description: - The number of nodes to allocate for this model. These nodes are always up, starting from the time the model is deployed. returned: success type: int predictionClass: description: - The fully qualified name (module_name.class_name) of a class that implements the Predictor interface described in this reference field. The module containing this class should be included in a package provided to the packageUris field. returned: success type: str model: description: - The model that this version belongs to. returned: success type: dict isDefault: description: - If true, this version will be used to handle prediction requests that do not specify a version. returned: success type: bool ''' ################################################################################ # Imports ################################################################################ from ansible_collections.google.cloud.plugins.module_utils.gcp_utils import ( navigate_hash, GcpSession, GcpModule, GcpRequest, remove_nones_from_dict, replace_resource_dict, ) import json import time ################################################################################ # Main ################################################################################ def main(): """Main function""" module = GcpModule( argument_spec=dict( state=dict(default='present', choices=['present', 'absent'], type='str'), name=dict(required=True, type='str'), description=dict(type='str'), deployment_uri=dict(required=True, type='str'), runtime_version=dict(type='str'), machine_type=dict(type='str'), labels=dict(type='dict'), framework=dict(type='str'), python_version=dict(type='str'), service_account=dict(type='str'), auto_scaling=dict(type='dict', options=dict(min_nodes=dict(type='int'))), manual_scaling=dict(type='dict', options=dict(nodes=dict(type='int'))), prediction_class=dict(type='str'), model=dict(required=True, type='dict'), is_default=dict(type='bool', aliases=['default']), ), mutually_exclusive=[['auto_scaling', 'manual_scaling']], ) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/cloud-platform'] state = module.params['state'] fetch = fetch_resource(module, self_link(module)) changed = False if fetch: if state == 'present': if is_different(module, fetch): update(module, self_link(module)) fetch = fetch_resource(module, self_link(module)) changed = True else: delete(module, self_link(module)) fetch = {} changed = True else: if state == 'present': fetch = create(module, collection(module)) if module.params.get('is_default') is True: set_default(module) changed = True else: fetch = {} fetch.update({'changed': changed}) module.exit_json(**fetch) def create(module, link): auth = GcpSession(module, 'mlengine') return wait_for_operation(module, auth.post(link, resource_to_request(module))) def update(module, link): if module.params.get('is_default') is True: set_default(module) def delete(module, link): auth = GcpSession(module, 'mlengine') return wait_for_operation(module, auth.delete(link)) def resource_to_request(module): request = { u'name': module.params.get('name'), u'description': module.params.get('description'), u'deploymentUri': module.params.get('deployment_uri'), u'runtimeVersion': module.params.get('runtime_version'), u'machineType': module.params.get('machine_type'), u'labels': module.params.get('labels'), u'framework': module.params.get('framework'), u'pythonVersion': module.params.get('python_version'), u'serviceAccount': module.params.get('service_account'), u'autoScaling': VersionAutoscaling(module.params.get('auto_scaling', {}), module).to_request(), u'manualScaling': VersionManualscaling(module.params.get('manual_scaling', {}), module).to_request(), u'predictionClass': module.params.get('prediction_class'), } return_vals = {} for k, v in request.items(): if v or v is False: return_vals[k] = v return return_vals def fetch_resource(module, link, allow_not_found=True): auth = GcpSession(module, 'mlengine') return return_if_object(module, auth.get(link), allow_not_found) def self_link(module): res = {'project': module.params['project'], 'model': replace_resource_dict(module.params['model'], 'name'), 'name': module.params['name']} return "https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions/{name}".format(**res) def collection(module): res = {'project': module.params['project'], 'model': replace_resource_dict(module.params['model'], 'name')} return "https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions".format(**res) def return_if_object(module, response, allow_not_found=False): # If not found, return nothing. if allow_not_found and response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError): module.fail_json(msg="Invalid JSON response with error: %s" % response.text) result = decode_response(result, module) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result def is_different(module, response): request = resource_to_request(module) response = response_to_hash(module, response) request = decode_response(request, module) # Remove all output-only from response. response_vals = {} for k, v in response.items(): if k in request: response_vals[k] = v request_vals = {} for k, v in request.items(): if k in response: request_vals[k] = v return GcpRequest(request_vals) != GcpRequest(response_vals) # Remove unnecessary properties from the response. # This is for doing comparisons with Ansible's current parameters. def response_to_hash(module, response): return { u'name': response.get(u'name'), u'description': response.get(u'description'), u'deploymentUri': response.get(u'deploymentUri'), u'createTime': response.get(u'createTime'), u'lastUseTime': response.get(u'lastUseTime'), u'runtimeVersion': response.get(u'runtimeVersion'), u'machineType': response.get(u'machineType'), u'state': response.get(u'state'), u'errorMessage': response.get(u'errorMessage'), u'packageUris': response.get(u'packageUris'), u'labels': response.get(u'labels'), u'framework': response.get(u'framework'), u'pythonVersion': response.get(u'pythonVersion'), u'serviceAccount': response.get(u'serviceAccount'), u'autoScaling': VersionAutoscaling(response.get(u'autoScaling', {}), module).from_response(), u'manualScaling': VersionManualscaling(response.get(u'manualScaling', {}), module).from_response(), u'predictionClass': response.get(u'predictionClass'), } def async_op_url(module, extra_data=None): if extra_data is None: extra_data = {} url = "https://ml.googleapis.com/v1/{op_id}" combined = extra_data.copy() combined.update(module.params) return url.format(**combined) def wait_for_operation(module, response): op_result = return_if_object(module, response) if op_result is None: return {} status = navigate_hash(op_result, ['done']) wait_done = wait_for_completion(status, op_result, module) raise_if_errors(wait_done, ['error'], module) return navigate_hash(wait_done, ['response']) def wait_for_completion(status, op_result, module): op_id = navigate_hash(op_result, ['name']) op_uri = async_op_url(module, {'op_id': op_id}) while not status: raise_if_errors(op_result, ['error'], module) time.sleep(1.0) op_result = fetch_resource(module, op_uri, False) status = navigate_hash(op_result, ['done']) return op_result def raise_if_errors(response, err_path, module): errors = navigate_hash(response, err_path) if errors is not None: module.fail_json(msg=errors) # Short names are given (and expected) by the API # but are returned as full names. def decode_response(response, module): if 'name' in response and 'metadata' not in response: response['name'] = response['name'].split('/')[-1] return response # Sets this version as default. def set_default(module): res = {'project': module.params['project'], 'model': replace_resource_dict(module.params['model'], 'name'), 'name': module.params['name']} link = "https://ml.googleapis.com/v1/projects/{project}/models/{model}/versions/{name}:setDefault".format(**res) auth = GcpSession(module, 'mlengine') return_if_object(module, auth.post(link)) class VersionAutoscaling(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict({u'minNodes': self.request.get('min_nodes')}) def from_response(self): return remove_nones_from_dict({u'minNodes': self.request.get(u'minNodes')}) class VersionManualscaling(object): def __init__(self, request, module): self.module = module if request: self.request = request else: self.request = {} def to_request(self): return remove_nones_from_dict({u'nodes': self.request.get('nodes')}) def from_response(self): return remove_nones_from_dict({u'nodes': self.request.get(u'nodes')}) if __name__ == '__main__': main()